人教版七年级数学上册第三章一元一次方程3.2 合并同类型与移项专题(习题含答案解析)

文档属性

名称 人教版七年级数学上册第三章一元一次方程3.2 合并同类型与移项专题(习题含答案解析)
格式 zip
文件大小 425.1KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2019-08-26 11:25:17

图片预览

文档简介


知识
1.解一元一次方程
(1)一般步骤:去分母、去括号、移项、合并同类项、___________,这是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向___________形式转化.
(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即___________.使方程逐渐转化为ax=b的最简形式,体现化归思想.
2.移项:
把等式一边的某项___________后移到另一边,叫做移项.
3.合并同类项:
把方程中含有的同类项合并,使方程变得简单,更接近于“x=a”的形式,合并时要牢记合并同类项的法则:同类项的系数___________,字母及字母的指数___________.
(1)合并同类项的实质是系数的合并,字母及其指数都不变.
(2)含不同未知数的项不能合并.
(3)系数是负数时,合并时注意不能丢了负号.
4.实际问题列方程的基本步骤:
(1)设未知数;(2)找相等关系;(3)列方程.
知识参考答案:
1.(1)系数化为1,x=a(2)(a+b)x=c 2.变号 3.相加,不变
重点
—重点
(1)解一元一次方程——系数化为1;(2)解一元一次方程——合并同类项;(3)解一元一次方程——移项;(4)列方程解决实际问题.
—难点
列方程解决实际问题.
—易错
移项时要变号.
一、解一元一次方程——合并同类项与移项
1.解一元一次方程——合并同类项
解方程中的合并同类项与整式加减中的合并同类项一样,要牢记合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.
2.解一元一次方程——移项
移项必须是由等号的一边移到另一边,而不是在等号的同一边交换位置.方程中的项包括它前面的符号,移项时,一般都习惯把含未知数的项移到等号左边,把常数项移到等号右边.
3.解一元一次方程——系数化为1
将形如ax=b(a≠0)的方程化为x=的形式,也就是求出方程的解x=的过程,叫做系数化为1.
系数化为1的依据是等式的性质2,方程左右两边同时乘未知数系数的倒数.
【例1】方程2x–3=5解是
A.x=4 B.x=5
C.x=3 D.x=6
【答案】A
【解析】方程移项合并得:2x=8,解得x=4,故选A.
【名师点睛】
1.合并同类项的实质是系数的合并,字母及指数都不变;
2.系数合并时要连同前面的“±”号,如–3x+2x=5应变成(–3+2)x=5,即–x=5;
3.系数合并的实质是有理数的加法运算;
4.移项时,所移的项一定要变号,而且必须是从方程的一边移到方程的另一边.
二、列一元一次方程解决实际问题
1.列一元一次方程解决实际问题的一般步骤:
审题→找相等关系→设未知数→列方程→解方程→检验→写出答案
2.常见的两种基本相等关系
(1)总量=各部分量的和;
(2)表示同一个量的两个不同的式子相等.
【例2】《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有女子善织,日自倍,五日织五尺.问日织几何?译文:一位善于织布的妇女,每天织的布都是前一天的2倍,她5天共织了5尺布,问在这5天里她每天各织布多少尺?设她笫一天织布为x尺,以下列出的方程正确的是
A.x+2x=5 B.x+2x+4x+6x+8x=5
C.x+2x+4x+8x+16x=5 D.x+2x+4x+16x+32x=5
【答案】C
【解析】设她笫一天织布为x尺,可得x+2x+4x+8x+16x=5,故选C.
【名师点睛】
1.列一元一次方程解决实际问题的关键是审题,寻找相等关系;
2.求出方程的解后要检验(检验的过程在草稿纸上进行),既要检验所求出的解是不是方程的解,又要检验所求出的解是否符合实际意义.
基础训练
1.方程的解是
A.x=3 B.x=4 C.x=2 D.x=6
2.方程x–3=–6的解是
A.x=2 B.x=–2 C.x=3 D.x=–3
3.方程的解是
A.

4.如果,那么等于
A.1814.55 B.1824.55
C.1774.45 D.1784.45
5.下列通过移项变形,错误的是
A.由x+2=2x–7,得x–2x=–7–2 B.由x+3=2–4x,得x+4x=2–3
C.由2x–3+x=2x–4,得2x–x–2x=–4+3 D.由1–2x=3,得2x=1–3
6.若关于x的方程ax–4=a的解是x=3,则a的值是
A.–2 B.2 C.–1 D.1
7.已知关于x的方程2x–3m–12=0的解是x=3,则m的值为
A.–2 B.2 C.–6 D.6
8.若a+3=0,则a的值是
A.–3 B. C. D.3
9.若代数式5x–7与4x+9的值相同,则x的值为
A.2 B.16 C.
10.若代数式x–7与–2x+2的值互为相反数,则x的值为
A.3 B.–3 C.5 D.–5
11.方程2x–2=4的解是
A.x=2 B.x=3 C.x=4 D.x=5
12.方程2x–1=3的解是
A.x=1 B.x=2 C.x=4 D.x=8
13.方程x–1=2018的解为
A.x= 2017 B.x= 2019 C.x=–2017 D.x=–2019
14.方程2–5x=9的解是
A.x=– B.x= C.x= D.x=–
15.方程2x+1=3的解是
A.x=?1 B.x=1 C.x=2 D.x=?2
16.如果□×(–3)=1,则“□”内应填的实数是
A. B.3 C.–3 D.
17.下列变形属于移项的是
A.由,得 B.由,得
C.由,得 D.由,得
18.方程3x=15–2x的解是
A.x=3 B.x=4 C.x=5 D.x=6
19.方程的解是
A. B. C.x=2 D.
20.若代数式x–3的值为2,则x等于
A.1 B.–1 C.5 D.–5
21.方程的解为__________.
22.方程的解为__________.
23.如果x=2是关于x的方程x–a=3的解,则a=__________.
24.方程的解是___________.
25.若(a–1)x|a|+3=–6是关于x的一元一次方程,则a=___________;x=___________.
26.若关于x的方程3x+4=0与方程3x+4k=18是同解方程,则k=___________.
27.将x=–y–1代入4x–9y=8,可得到一元一次方程_______.
28.解方程:
(1)–2x=6;(2)x–11=7;(3)x+13=5x+37;(4)3x–x=–+1.
29.有人问小明的生日是几号,小明说:“在日历表上,我的生日连同上、下、左、右5个日期之和是21.”小明撒谎了吗?为什么?
30.已知A=2x2+3xy–2x–1,B=–x2+xy–1.
若3A+6B的值与x的值无关,求y的值.
能力测试
31.代数式与的值相等,则a等于
A.0 B.1 C.2 D.3
32.若方程和的解相同,则a的值为
A.7 B.5 C.3 D.0
33.关于的方程的解与方程的解相同,则的值是
A. B. C. D.
34.方程的解是
A. B. C. D.
35.马强在计算“41+x”时,误将“+”看成“–”,结果得12,则41+x的值应为
A.29 B.53 C.67 D.70
36.方程|x–3|=6的解是
A.9 B.±9 C.3 D.9或–3
37.对任意四个有理数a,b,c,d定义新运算:,已知,则x=
A.–1 B.2 C.3 D.4
38.a※b是新规定的这样一种运算法则:a※b=a+2b,例如3※(–2)=3+2×(–2)=–1.若(–2)※x=2+x,则x的值是
A.1 B.5 C.4 D.2
39.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?
40.若新规定这样一种运算法则:a*b=a2+2ab,例如3*(–2)=32+2×3×(–2)=–3.
(1)试求(–1)*2的值;
(2)若3*x=2,求x的值;
(3)(–2)*(1+x)=–x+6,求x的值.
真题训练
41.(2018·恩施)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店
A. 不盈不亏 B. 盈利20元
C. 亏损10元 D. 亏损30元
42.(2018·武汉)将正整数1至2018按一定规律排列如下表:
平移表中带阴影的方框,方框中三个数的和可能是
A. 2019 B. 2018 C. 2016 D. 2013
参考答案
3.【答案】D
【解析】移项得:2x=3+1,
合并得:2x=4,
系数化为1得:x=2.
故选D.
4.【答案】B
【解析】移项可得:,
合并同类项可得:,
系数化为1可得:.
故选B.
5.【答案】C
6.【答案】B
【解析】把x=3代入方程得:3a–4=a,解得:a=2,故选B.
7.【答案】A
【解析】把x=3代入2x–3m–12=0得6–3m–12=0,所以m=–2.故选A.
8.【答案】A
【解析】a+3=0,移项得,a=–3.故选A.
9.【答案】B
【解析】根据题意得:5x?7=4x+9,移项得:5x–4x=9+7,
合并同类项得:x=16,故选B.
10.【答案】D
【解析】根据题意得:x–7?2x+2=0,
移项合并得:–x=5,
解得:x=?5,
故选D.
11.【答案】B
【解析】方程移项得:2x=4+2,
合并得:2x=6,
解得:x=3,
故选B.
12.【答案】B
【解析】移项得:2x=3+1,
合并同类项得:2x=4,
把x的系数化为1得:x=2.
故选B.
16.【答案】D
【解析】设“□”内应填的实数是x,
则–3x=1,
解得,x=,
故选D.
17.【答案】C
【解析】选项A只是将方程左边的式子进行变形,并没有进行移项;
选项B属于将方程的未知数系数化为1;
选项C进行了移项;
选项D为方程的左边进行合并同类项.
故选C.
18.【答案】A
【解析】方程移项合并得:5x=15,
解得:x=3.
故选A.
19.【答案】C
【解析】移项得:x+x=2+2,合并同类项得:2x=4,解得:x=2.故选C.
解得:,
故答案为:.
24.【答案】x=8
【解析】移项可得:,
合并同类项可得:,
系数化为1可得:.
故答案为: x=8.
25.【答案】(1)–1;(2).
【解析】∵方程(a–1)x|a|+3=–6是关于x的一元一次方程,
所以,,解得,
所以原方程为:,解得:.
故答案为:(1)–1;(2).
26.【答案】
27.【答案】5y+4=0
【解析】将代入,
得,
整理得:.
故答案为:.
28.【解析】(1)–2x=6,x=–3;
(2)x–11=7,
x=7+11,
x=18;
(3)x+13=5x+37,
x–5x=37–13,
–4x=24,
x=–6;
(4)3x–x=–+1,
2x=,
x=.
29.【解析】小明撒谎了.理由如下.
30.【解析】∵A=2x2+3xy–2x–1,B=–x2+xy–1,
所以3A+6B=15xy–6x–9=(15y–6)x–9, 要使3A+6B的值与x的值无关,则15y–6=0, 解得:y=.
31.【答案】B
【解析】根据题意得:a?2=1?2a,
移项合并得:3a=3,
解得:a=1.
故选B.
32.【答案】A
【解析】解第一个方程得:x=1,
解第二个方程得:x=a?6,所以a?6=1,
解得:a=7.故选A.
33.【答案】A
【解析】解方程,得,
把代入得,
解得故选A.
34.【答案】A
【解析】,.故选A.
35.【答案】D
【解析】由题意可得:,解得:,
所以.
故选D.
36.【答案】D
【解析】∵,
所以或,
解得:或.
故选D.
37.【答案】C
【解析】∵,所以2x+4x=18,即:x=3,故选C.
40.【解析】(1)根据题中的新定义得:原式=1–4=–3;
(2)已知等式利用题中的新定义化简得:9+6x=2,
解得:x=–;
(3)已知等式利用题中的新定义化简得:4–4–4x=–x+6,
移项合并得:3x=–6,
解得:x=–2.
41.【答案】C
【解析】设两件衣服的进价分别为x、y元,
根据题意得:120–x=20%x,y–120=20%y,
解得:x=100,y=150,
所以120+120–100–150=–10(元).
故选:C.
42.【答案】D