3.3.1 两条直线的交点坐标
【教学目标】
1.掌握两直线方程联立方程组解的情况与两直线不同位置的对立关系,并且会通过直线方程系数判定解的情况,
2.当两条直线相交时,会求交点坐标.
3.学生通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.
【重点难点】
教学重点:根据直线的方程判断两直线的位置关系和已知两相交直线求交点.
教学难点:对方程组系数的分类讨论与两直线位置关系对应情况的理解.
【教学过程】
导入新课
问题1.作出直角坐标系中两条直线,移动其中一条直线,让学生观察这两条直线的位置关系.
课堂设问:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?你能求出它们的交点坐标吗?说说你的看法.
问题2.你认为该怎样由直线的方程求出它们的交点坐标?这节课我们就来研究这个问题.
新知探究
提出问题
①已知两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,如何判断这两条直线的关系?
②如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?
③解下列方程组(由学生完成):
(ⅰ); (ⅱ); (ⅲ).
如何根据两直线的方程系数之间的关系来判定两直线的位置关系?
④当λ变化时,方程3x+4y-2+λ(2x+y+2)=0表示什么图形,图形有什么特点?求出图形的交点坐标.
讨论结果:①教师引导学生先从点与直线的位置关系入手,看下表,并填空.
几何元素及关系
代数表示
点A
A(a,b)
直线l
l:Ax+By+C=0
点A在直线上
直线l1与l2的交点A
②学生进行分组讨论,教师引导学生归纳出两直线是否相交与其方程所组成的方程组的关系.
设两条直线的方程是l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,
如果这两条直线相交,由于交点同时在这两条直线上,交点的坐标一定是这两个方程的唯一公共解,那么以这个解为坐标的点必是直线l1和l2的交点,因此,两条直线是否有交点,就要看这两条直线方程所组成的方程组是否有唯一解.
(ⅰ)若二元一次方程组有唯一解,则l1与l2相交;
(ⅱ)若二元一次方程组无解,则l1与l2平行;
(ⅲ)若二元一次方程组有无数解,则l1与l2重合.即
直线l1、l2联立得方程组
(代数问题) (几何问题)
③引导学生观察三组方程对应系数比的特点:
(ⅰ)≠;(ⅱ);(ⅲ)≠.
一般地,对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1B1C1≠0,A2B2C2≠0),有
方程组.
注意:(a)此关系不要求学生作详细的推导,因为过程比较繁杂,重在应用.
(b)如果A1,A2,B1,B2,C1,C2中有等于零的情况,方程比较简单,两条直线的位置关系很容易确定.
④(a)可以用信息技术,当λ取不同值时,通过各种图形,经过观察,让学生从直观上得出结论,同时发现这些直线的共同特点是经过同一点.
(b)找出或猜想这个点的坐标,代入方程,得出结论.
(c)结论:方程表示经过这两条直线l1与l2的交点的直线的集合.
应用示例
例1 求下列两直线的交点坐标,l1:3x+4y-2=0,l2:2x+y+2=0.
解:解方程组得x=-2,y=2,所以l1与l2的交点坐标为M(-2,2).
变式训练
求经过原点且经过以下两条直线的交点的直线方程.l1:x-2y+2=0,l2:2x-y-2=0.
解:解方程组x-2y+2=0,
2x-y-2=0,
得x=2,
y=2,所以l1与l2的交点是(2,2).
设经过原点的直线方程为y=kx,把点(2,2)的坐标代入以上方程,得k=1,所以所求直线方程为y=x.
点评:此题为求直线交点与求直线方程的综合运用,求解直线方程也可应用两点式.
例2 判断下列各对直线的位置关系.如果相交,求出交点坐标.
(1)l1:x-y=0,l2:3x+3y-10=0.
(2)l1:3x-y+4=0,l2:6x-2y-1=0.
(3)l1:3x+4y-5=0,l2:6x+8y-10=0.
活动:教师让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁,然后再进行讲评.
解:(1)解方程组得
所以l1与l2相交,交点是(,).
(2)解方程组
①×2-②得9=0,矛盾,
方程组无解,所以两直线无公共点,l1∥l2.
(3)解方程组
①×2得6x+8y-10=0.
因此,①和②可以化成同一个方程,即①和②表示同一条直线,l1与l2重合.
变式训练
判定下列各对直线的位置关系,若相交,则求交点.
(1)l1:7x+2y-1=0,l2:14x+4y-2=0.
(2)l1:(-)x+y=7,l2:x+(+)y-6=0.
(3)l1:3x+5y-1=0,l2:4x+3y=5.
答案:(1)重合,(2)平行,(3)相交,交点坐标为(2,-1).
例3 求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程.
思路解析:根据本题的条件,一种思路是先求出交点坐标,再设所求直线的点斜式方程求出所要求的直线方程;另一种思路是利用直线系(平行系或过定点系)直接设出方程,根据条件求未知量,得出所求直线的方程.
解:(方法一)由方程组得
∵直线l和直线3x+y-1=0平行,
∴直线l的斜率k=-3.
∴根据点斜式有y-()=-3[x-()],
即所求直线方程为15x+5y+16=0.
(方法二)∵直线l过两直线2x-3y-3=0和x+y+2=0的交点,
∴设直线l的方程为2x-3y-3+λ(x+y+2)=0,
即(λ+2)x+(λ-3)y+2λ-3=0.
∵直线l与直线3x+y-1=0平行,
∴.解得λ=.
从而所求直线方程为15x+5y+16=0.
点评:考查熟练求解直线方程,注意应用直线系快速简洁解决问题。
变式训练
求经过两条直线l1:x+y-4=0和l2:x-y+2=0的交点,且与直线2x-y-1=0垂直的直线方程
例4 求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.
思路解析:题目所给的直线方程的系数含有字母m,给m任何一个实数值,就可以得到一条确定的直线,因此所给的方程是以m为参数的直线系方程.要证明这个直线系中的直线都过一定点,就是证明它是一个共点的直线系,我们可以给出m的两个特殊值,得到直线系中的两条直线,它们的交点即是直线系中任何直线都过的定点.
另一个思路是:由于方程对任意的m都成立,那么就以m为未知数,整理为关于m的一元一次方程,再由一元一次方程有无数个解的条件求得定点的坐标.
解:解法一:对于方程(2m-1)x+(m+3)y-(m-11)=0,令m=0,得x-3y-11=0;令m=1,得x+4y+10=0.解方程组得两条直线的交点为(2,-3).将点(2,-3)代入已知直线方程左边,
得(2m-1)×2+(m+3)×(-3)-(m-11)=4m-2-3m-9-m+11=0.
这表明不论m为什么实数,所给直线均经过定点(2,-3).
解法二:将已知方程以m为未知数,整理为(2x+y-1)m+(-x+3y+11)=0.
由于m的取值的任意性,有解得
所以所给直线不论m取什么实数,均经过定点(2,-3)
点评 含参直线过定点问题的解题思路有二:一是曲线过定点,即与参数无关,则参数的同次幂的系数为0,从而求出定点;二是分别令参数为两个特殊值,得方程组,求出点的坐标,代入原方程满足,则此点为所求定点
变式训练 当a为任意实数时,直线(a-1)x-y+2a+1=0经过的定点是( )
A.(2,3) B.(-2,3)
C.(1,) D.(-2,0)
解析:直线方程可化为a(x+2)-x-y+1=0,由定点(-2,3).
答案:B
课堂小结
本节课通过讨论两直线方程联立方程组来研究两直线的位置关系,得出了方程系数比的关系与直线位置关系的联系.培养了同学们的数形结合思想、分类讨论思想和转化思想.通过本节学习,要求学生掌握两直线方程联立方程组解的情况与两直线不同位置的对立关系,并且会通过直线方程系数判定解的情况,培养学生树立辩证统一的观点.当两条直线相交时,会求交点坐标.注意语言表述能力的训练.通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.以“特殊”到“一般”,培养探索事物本质属性的精神,以及运动变化的相互联系的观点.
当堂检测
导学案课内探究部分
【板书设计】
一、两条直线的交点坐标
二、例题
例1
变式1
例2
变式2
【作业布置】
课本习题3.3 A组1、2、3,选做4题.及导学案课后练习与提高
两条直线的交点坐标
课前预习学案
一、预习目标
根据直线的方程判断两直线的位置关系和已知两相交直线求交点
预习内容
1、阅读课本102-104,找出疑惑之处。同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点
疑惑内容
2、知识概览
①两直线相交,则交点同时在这两条直线上,交点的坐标一定是两直线方程的解,若两直线的方程组成的方程组只有一个公共解,则以这个解为坐标的点必是两直线的交点.
②两直线A1x+B1y+C1=0与A2x+B2y+C2=0的交点情况,取决于方程组的解的情况.
若方程组有唯一解,则两直线相交.
若方程组无解,则两直线平行.
若方程组有无数个解,则两直线重合.
3、思考 当λ变化时,方程3x+4y-2+λ(2x+y+2)=0表示什么图形?图形有何特点?
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
掌握判断两条直线相交的方法,会通过解方程组求两条直线的交点坐标;
了解过两条直线交点的直线系方程的问题.
教学重点:根据直线的方程判断两直线的位置关系和已知两相交直线求交点.
教学难点:对方程组系数的分类讨论与两直线位置关系对应情况的理解.
二、学习过程
自主学习
【知识点一】、两条直线的交点
如果两条直线相交,则交点坐标分别适合两条直线的方程,即(
); 把两条直线的方程组成方程组,若方程组有( )解,则两条直线相交,此解就是交点的坐标;若方程组( ),则两条直线无公共点,此时两条直线平行;若方程组有( ),则两条直线有无数个公共点,此时两条直线重合.
.
【知识点二】、直线系方程
具有某一共同属性的一类直线的集合称为直线系,表示直线系的方程叫做直线系方程.方程的特点是除含坐标变量x、y以外,还含有待定系数(也称参变量).
(1)共点直线系方程:经过两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定系数.在这个方程中,无论λ取什么实数,都得不到A2x+B2y+C2=0,因此它不能表示直线l2.
(2)平行直线系:与直线Ax+By+C=0平行的直线系方程是( ),λ是参变量.
(3)垂直直线系方程:与Ax+By+C=0(A≠0,B≠0)垂直的直线系方程是( )
(4)特殊平行线与过定点(x0,y0)的直线系:当斜率k一定而m变动时,( )表示斜率为k的平行线系,( )表示过定点(x0,y0)的直线系(不含直线x=x0).
问题 设两条直线的方程为l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0,如果这两条直线相交,你能分析它们的系数满足什么关系吗?
探究:我们可以先解由两直线方程联立的方程组
①×B2-②×B1,得(A1B2-A2B1)x+B2C1-B1C2=0.
当A1B2-A2B1≠0时,得x=;再由①×A2-②×A1,当A1B2-A2B1≠0时,可得y=.因此,当A1B2-A2B1≠0时,方程组有唯一一组解x、y.
这时两条直线相交,交点的坐标就是(x,y).因此这两条直线相交时,系数满足的关系为A1B2-A2B1≠0.
精讲点拨
求下列两直线的交点坐标,l1:3x+4y-2=0,l2:2x+y+2=0.
变式训练
求经过原点且经过以下两条直线的交点的直线方程.l1:x-2y+2=0,l2:2x-y-2=0.
例2 判断下列各对直线的位置关系.如果相交,求出交点坐标.
(1)l1:x-y=0,l2:3x+3y-10=0.
(2)l1:3x-y+4=0,l2:6x-2y-1=0.
(3)l1:3x+4y-5=0,l2:6x+8y-10=0.
. 变式训练
判定下列各对直线的位置关系,若相交,则求交点.
(1)l1:7x+2y-1=0,l2:14x+4y-2=0.
(2)l1:(-)x+y=7,l2:x+(+)y-6=0.
(3)l1:3x+5y-1=0,l2:4x+3y=5.
问题 当λ变化时,方程3x+4y-2+λ(2x+y+2)=0表示什么图形?图形有何特点?
求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程.
变式训练
求经过两条直线l1:x+y-4=0和l2:x-y+2=0的交点,且与直线2x-y-1=0垂直的直线方程.
例4 求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标
.
.
变式训练 当a为任意实数时,直线(a-1)x-y+2a+1=0经过的定点是( )
A.(2,3) B.(-2,3)
C.(1,) D.(-2,0)
反思总结 1. 两条直线的交点。直线相交的问题转化为求方程组的解的问题,且解的个数决定两条直线的位置关系.两直线的交点坐标对应的就是两直线方程所组成方程组的解.
2. 直线系方程。如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.
当堂检测
1.两条直线l1:2x+3y-m=0与l2:x-my+12=0的交点在y轴上,那么m的值为( )
A.-24 B.6 C.±6 D.以上答案均不对
2.无论k为何值,直线(k+2)x+(1-k)y-4k-5=0都过一个定点,则定点坐标为( )
A.(1,3) B.(-1,3) C.(3,1) D.(3,-1)
3.求经过两条直线l1:x+y-4=0和l2:x-y+2=0的交点,且与直线2x-y-1=0
平行直线方程.
参考答案
1.解析:l1:2x+3y-m=0在y轴上的截距为,l2:x-my+12=0在y轴上的截距为,根据两直线的交点在y轴上得m=±6.
答案:C
2.思路解析:直线方程展开按是否含参数k合并同类项,得(2x+y-5)+k(x-y-4)=0,由直线系方程,知此直线过两直线的交点,即为解得
交点为(3,-1).
3.解析:由
∴l1与l2的交点为(1,3).
(1)解法一:设与直线2x-y-1=0平行的直线为2x-y+c=0,则2-3+c=0,∴c=1.
∴所求直线方程为2x-y+1=0.
解法二:∵所求直线的斜率k=2,且经过点(1,3),∴所求直线方程为y-3=2(x-1),
即2x-y+1=0.
课后巩固练习与提高
知能训练
课本本节练习1、2.
拓展提升
1.已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足为(1,p),则m-n+p为( )
A.24 B.20 C.0 D.-4
2.已知点P(-1,0),Q(1,0),直线y=-2x+b与线段PQ相交,则b的取值范围是( )
A.[-2,2] B.[-1,1] C.[-,] D.[0,2]
3.三条直线x+y=2、x-y=0、x+ay=3构成三角形,求a的取值范围.
4. 已知两直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,当m为何值时,直线l1与l2:①相交;②平行;③重合;④垂直.
5.三条直线l1:ax+y+1=0,l2:x+ay+1=0,l3:x+y+a=0构成三角形的条件是什么?
(2)由可得直线x+y=2和直线x-y=0的交点坐标为(1,1).若三线共点,则点(1,1)在直线x+ay=3上,
所以有1+a=3.解得a=2.
综上,可知a满足的条件为a{-1,1,2}.
4.解:联立方程组
(1)当m=0时,则l1:x+6=0,l2:-2x+3y=0,∴l1、l2相交.
当m=2时,则l1:x+2y+6=0,l2:3y+4=0,∴l1、l2相交.
(2)当m≠0且m≠2时,,,.
若=m=-1或m=3;若=m=3.
∴当m≠-1且m≠3时(≠),方程组有唯一解,l1、l2相交.
当m=-1时(=≠),方程组无解,l1与l2平行.
当m=3时(==),方程组有无数解,l1与l2重合.
(3)当m-3+3m=0即m=时,l1与l2垂直(∵l1⊥l2A1A2+B1B2=0).
点评:要注意培养学生分类讨论的思想.
5.解析:三直线构成三角形,则需任意两条直线都相交,且不能相交于一点.注意不要忽略三线交于同一点的情况.所以可以从正反两个方向来思考.
解法一:任两条直线都相交,则,,故a≠±1.又有三条直线不交于同一点,
故其中两条直线的交点(-1-a,1)不在直线ax+y+1=0上,即a(-1-a)+1+1≠0,a2+a-2≠0,(a+2)(a-1)≠0,∴a≠-2,a≠1.
综合上述结果,三条直线构成三角形的条件是a≠±1,a≠-2.
解法二:因为三条直线能构成三角形,所以三条直线两两相交且不共点,即任意两条直线都不平行,且三线不共点.可以把不能构成三角形的情况排除掉.
若三条直线交于同一点,则其中两条直线的交点(-1-a,1)在直线ax+y+1=0上,∴a(-a-1)+1+1=0,∴a=1或a=-2.
若l1∥l2,则有,a=1;若l1∥l3,则有,a=1;若l2∥l3,则有,a=±1.
所以若三条直线构成三角形,则需a≠±1,a≠-2.
课件23张PPT。3.3.1两条直线的
交点坐标复习引入1. 讨论:如何用代数方法求方程组的解?
2. 讨论:两直线交点与方程组的解之间有
什么关系?讲授新课1. 讨论:直线上的点与其方程
Ax+By+C=0的解有什么样的
关系?2. 完成P.102的表格2. 完成P.102的表格A∈l2. 完成P.102的表格A∈ll1∩ l2=A 直线l上每一个点的坐标都满足直线
方程,也就是说直线上的点的坐标是其
方程的解.反之直线l的方程的每一组解都
表示直线上的点的坐标.3.直线上的点与直线方程的解的关系点A(-2,2)是否在直线
l1:3x+4y-2=0上?
点A(-2,2) 是否在直线
l2:2x+y+2=0上?讨论:点A(-2,2)是否在直线
l1:3x+4y-2=0上?
点A(-2,2) 是否在直线
l2:2x+y+2=0上?点A和直线l1与l2有什么关系?
为什么?讨论:讨论:例1.求下列两条直线的交点坐标 l1:3x+4y-2=0,
l2:2x+y+2=0. 两直线是否有公共点,要看它们的方
程是否有公共解. 因此,只要将两条直线
l1和l2的方程联立,得方程组 4. 如何利用方程判断两直线的位置关系? 两直线是否有公共点,要看它们的方
程是否有公共解. 因此,只要将两条直线
l1和l2的方程联立,得方程组 4. 如何利用方程判断两直线的位置关系?4. 如何利用方程判断两直线的位置关系?(1) 若方程组无解,
(2) 若方程组有且只有一个解, (3) 若方程组有无数解, 4. 如何利用方程判断两直线的位置关系?(1) 若方程组无解, 则l1// l2;(2) 若方程组有且只有一个解, (3) 若方程组有无数解, 4. 如何利用方程判断两直线的位置关系?(1) 若方程组无解, 则l1// l2;(2) 若方程组有且只有一个解, 则l1与l2相交;(3) 若方程组有无数解, 4. 如何利用方程判断两直线的位置关系?(1) 若方程组无解, 则l1// l2;(2) 若方程组有且只有一个解, 则l1与l2相交;(3) 若方程组有无数解, 则l1与l2重合.例2. 判断下列各对直线的位置关系,如果
相交,求出交点坐标.
(1) l1: x-y=0,l2: 3x+3y-10=0;
(2) l1: 3x-y+4=0,l2: 6x-2y-1=0;
(3) l1: 3x+4y-5=0,l2: 6x+8y-10=0.思维拓展当?变化时,
方程3x+4y-2+?(2x+y+2)=0
表示什么图形?图形有什么特点? 1. 教材P.104练习第1、2题.练习.1. 教材P.104练习第1、2题.练习.2. 求经过点(2, 3)且经过以下两条直线的
交点的直线的方程: l1:x+3y-4=0,
l2:5x+2y+6=0. 1. 教材P.104练习第1、2题.练习.2. 求经过点(2, 3)且经过以下两条直线的
交点的直线的方程: l1:x+3y-4=0,
l2:5x+2y+6=0. 3. k为何值时,直线l1:y=kx+3k-2,
与直线l2:x+4y-4=0
的交点在第一象限?课堂小结两条直线交点与它们方程组的解之间
的关系.
2.求两条相交直线的交点及利用方程组
判断两直线的位置关系.课后作业1. 阅读教材P.102到P.104;
2. 《习案》二十二.3.3.1 两直线的交点坐标
(一)教学目标
1.知识与技能
(1)直线和直线的交点.
(2)二元一次方程组的解.
2.过程和方法
(1)学习两直线交点坐标的求法,以及判断两直线位置的方法.
(2)掌握数形结合的学习法.
(3)组成学习小组,分别对直线和直线的位置进行判断,归纳过定点的直线系方程.
3.情态和价值
(1)通过两直线交点和二元一次方程组的联系,从而认识事物之间的内在的联系.
(2)能够用辩证的观点看问题.
(二)教学重点、难点
重点:判断两直线是否相交,求交点坐标.
难点:两直线相交与二元一次方程的关系.
(三)教学方法:启发引导式
在学生认识直线方程的基础上,启发学生理解两直线交点与二元一次方程组的相互关系.引导学生将两直线交点的求解问题转化为相应的直线方程构成的二元一次方程组解的问题.由此体会“形”的问题由“数”的运算来解决.
教具:用POWERPOINT课件的辅助式数学.
教学环节
教学内容
师生互动
设计意图
提出问题
用大屏幕打出直角坐标系中两直线,移动直线,让学生观察这两直线的位置关系.
课堂设问一:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?
设置情境导入新课
概念形成与深化
1.分析任务,分组讨论,判断两直线的位置关系
已知两直线L1:A1x + B1y + C1 = 0,L2:A2x + B2y + C2 = 0
如何判断这两条直线的关系?
教师引导学生先从点与直线的位置关系入手,看表一,并填空.
几何元素及关系
代数表示
点A
A (a,b)
直线L
L:Ax + By + C = 0
点A在直线上
直线L1与L2的交点A
师:提出问题
生:思考讨论并形成结论
通过学生分组讨论,使学生理解掌握判断两直线位置的方法.
课后探究:两直线是否相交与其方程组成的方程组的系数有何关系?
(1)若二元一次方程组有唯一解,L1与L2相交.
(2)若二元一次方程组无解,则L1与L2平行.
(3)若二元一次方程组有无数解,则L1与L2重合.
课堂设问二:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什么关系?
学生进行分组讨论,教师引导学生归纳出两直线是否相交与其方程所组成的方程组有何关系?
应用举例
例1 求下列两直线交点坐标
L1:3x + 4y –2 =0
L2:2x + y +2 =0
例2 判断下列各对直线的位置关系。如果相交,求出交点坐标。
(1)L1:x–y=0,L2:3x+3y–10=0
(2)L1:3x–y=0,L2:6x–2y=0
(3)L1:3x+4y–5=0,L2:6x+8y–10=0.
这道题可以作为练习以巩固判断两直线位置关系.
教师可以让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁,然后才进行讲解.
同类练习:书本110页第1,2题.
例1 解:解方程组
得x = –2,y =2.
所以L1与L2的交点坐标为M(–2,2),如图:
例2解:(1)解方程组
,
得
所以,l1与l2相交,交点是M ().
(2)解方程组
①×② – ②得9 = 0,矛盾,
方程组无解,所以两直线无公共点,l1∥l2.
(3)解方程组
①×2得6x + 8y –10 = 0.
因此,①和②可以化成同一个方程,即①和②表示同一条直线,l1与l2重合.
训练学生解题格式规范条理清楚,表达简洁.
方法探究
课堂设问一. 当λ变化时,方程3x + 4y–2+λ(2x + y +2) =0表示何图形,图形有何特点?求出图形的交点的坐标,
(1)可以用信息技术,当取不同值时,通过各种图形,经过观察,让学生从直观上得出结论,同时发现这些直线的共同特点是经过同一点。
(2)找出或猜想这个点的坐标,代入方程,得出结论。
(3)结论,方程表示经过这两直线L1与L2的交点的直线的集合。
培养学生由特殊到一般的思维方法.
应用举例
例3 已知a为实数,两直线l1:ax + y + 1= 0,l2:x + y – a = 0相交于一点.
求证交点不可能在第一象限及x轴上.
分析:先通过联立方程组将交点坐标解出,再判断交点横纵坐标的范围.
例3 解:解方程组若,则a>1. 当a>1时,–,此时交点在第二象限内.
又因为a为任意实数时,都有a2 +1≥1>0,故.
因为a≠1 (否则两直线平行,无交点),所以,交点不可能在x轴上,得交点().
引导学生将方法拓展与廷伸
归纳总结
小结:直线与直线的位置关系,求两直线的交点坐标,能将几何问题转化为代数问题来解决,并能进行应用.
师生共同总结
形成知识体系
课后作业
布置作业
见习案3.3第一课时
由学生独立完成
巩固深化新学知识
备选例题
例1 求经过点(2,3)且经过l1:x + 3y– 4 = 0与l2:5x + 2y + 6 = 0的交点的直线方程.
解法1:联立,
所以l1,l2的交点为(–2,2).
由两点式可得:所求直线方程为即x – 4y + 10 = 0.
解法2:设所求直线方程为:x + 3y – 4 +(5x + 2y + 6) = 0.
因为点(2,3)在直线上,所以2+3×3–4+(5×2+2×3+6) = 0,
所以,即所求方程为x + 3y – 4 + ()(5x + 2y + 6) = 0,
即为x – 4y + 10 = 0.
例2 已知直线l1:x + my + 6 = 0,l2:(m – 2)x + 3y + 2m = 0,试求m为何值时,l1与l2:(1)重合;(2)平行;(3)垂直;(4)相交.
【解析】当l1∥l2(或重合) 时:
A1B2 – A2B1 = 1×3 – (m – 2)·m = 0,解得:m = 3,m = –1.
(1)当m = 3时,l1:x + 3y + 6 = 0,l2:x + 3y + 6 = 0,所以l1与l2重合;
(2)当m = –1时,l1:x – y + 6 = 0,l2:–3x + 3y – 2 = 0,所以l1∥l2;
(3)当l1⊥l2时,A1A2 + B1B2 = 0,m – 2 + 3m = 0,即;
(4)当m≠3且m≠–1时,l1与l2相交.
例3 若直线l:y = kx – 与直线2x + 3y – 6 = 0的交点位于第一象限,则直线l的倾斜角的取值范围是:
A. B.
C. D.
【解析】直线l1:2x + 3y – 6 = 0过A(3,0),B (0,2)而l过定点C
由图象可知
所以l的倾斜角的取值范围是(30°,90°),故选B.
课件7张PPT。 §3.3.1两直线的交点坐标思考?问题1:方程组解的情况与方程组所表示的两条
直线的位置关系有何对应关系?问题2:如何根据两直线的方程系数之间的关系来判定两直线的位置关系?例2、判定下列各对直线的位置关系,若相交,
则求交点的坐标例题分析已知两直线
l1:x+my+6=0,l2:(m-2)x+3y+2m=0,
问当m为何值时,直线l1与l2:
(1)相交,(2) 平行,(3) 垂直练习练习:求经过原点及两条直线l1:3x+4y-2=0,
l2:2x+y+2=0的交点的直线的方程.课件9张PPT。 §3.3.1两直线的交点坐标思考?问题1:方程组解的情况与方程组所表示的两条
直线的位置关系有何对应关系?例2、判定下列各对直线的位置关系,若相交,
则求交点的坐标例题分析问题2:如何根据两直线的方程系数之间的关系来判定两直线的位置关系?1、已知两直线
l1:x+my+6=0,l2:(m-2)x+3y+2m=0,
问当m为何值时,直线l1与l2:
① 相交,② 平行,③ 重合,④ 垂直练习练习:求经过原点及两条直线l1:3x+4y-2=0,
l2:2x+y+2=0的交点的直线的方程.解下列方程组§3.3 直线的交点坐标与距离公式
3.3.1 两条直线的交点坐标
【课时目标】 1.掌握求两条直线交点的方法.2.掌握通过求方程组解的个数,判定两直线位置关系的方法.3.通过本节的学习初步体会用代数方法研究几何问题的解析思想.
1.两条直线的交点
已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.
若两直线方程组成的方程组有唯一解,则两直线______,交点坐标为________.
2.方程组的解的组数与两直线的位置关系
方程组
的解
交点
两直线
位置关系
方程系数特征
无解
两直线____交点
平行
A1B2=A2B1
B1C2≠B2C1
有唯一解
两条直线有
______个交点
相交
A1B2≠A2B1
有无数个解
两条直线有
________个交点
重合
A1B2=A2B1
B2C1=B1C2
一、选择题
1.直线l1:(-1)x+y=2与直线l2:x+(+1)y=3的位置关系是( )
A.平行 B.相交 C.垂直 D.重合
2.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线的方程是( )
A.2x+y-8=0 B.2x-y-8=0
C.2x+y+8=0 D.2x-y+8=0
3.直线ax+2y+8=0,4x+3y=10和2x-y=10相交于一点,则a的值为( )
A.1 B.-1 C.2 D.-2
4.两条直线l1:2x+3y-m=0与l2:x-my+12=0的交点在y轴上,那么m的值为( )
A.-24 B.6
C.±6 D.以上答案均不对
5.已知直线l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0,l1∥l2,则m的值是( )
A.m=3 B.m=0
C.m=0或m=3 D.m=0或m=-1
6.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为( )
A. B. C.- D.-
二、填空题
7.若集合{(x,y)|x+y-2=0且x-2y+4=0}?{(x,y)|y=3x+b},则b=________.
8.已知直线l过直线l1:3x-5y-10=0和l2:x+y+1=0的交点,且平行于l3:x+2y-5=0,则直线l的方程是______________.
9.当a取不同实数时,直线(2+a)x+(a-1)y+3a=0恒过一个定点,这个定点的坐标为________.
三、解答题
10.求经过两直线2x+y-8=0与x-2y+1=0的交点,且在y轴上的截距为x轴上截距的两倍的直线l的方程.
11.已知△ABC的三边BC,CA,AB的中点分别是D(-2,-3),E(3,1),F(-1,2).先画出这个三角形,再求出三个顶点的坐标.
能力提升
12.在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的角平分线所在直线的方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.
13.一束平行光线从原点O(0,0)出发,经过直线l:8x+6y=25反射后通过点P(-4,3),求反射光线与直线l的交点坐标.
1.过定点(x0,y0)的直线系方程
y-y0=k(x-x0)是过定点(x0,y0)的直线系方程,但不含直线x=x0;A(x-x0)+B(y-y0)=0是过定点(x0,y0)的一切直线方程.
2.与直线Ax+By+C=0平行的直线系方程为Ax+By+D=0(D≠C).与y=kx+b平行的直线系方程为y=kx+m(m≠b).
3.过两条直线交点的直线系方程:过两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程是A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但此方程中不含l2;一般形式是m(A1x+B1y+C1)+n(A2x+B2y+C2)=0(m2+n2≠0),是过l1与l2交点的所有直线方程.
§3.3 直线的交点坐标与距离公式
3.3.1 两条直线的交点坐标
答案
知识梳理
1.相交 (x0,y0)
2.无 1 无数
作业设计
1.A [化成斜截式方程,斜率相等,截距不等.]
2.A [首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.]
3.B [首先联立,解得交点坐标为(4,-2),代入方程ax+2y+8=0得a=-1.]
4.C [2x+3y-m=0在y轴上的截距为,直线x-my+12=0在y轴上的截距为,由=得m=±6.]
5.D [l1∥l2,则1·3m=(m-2)·m2,
解得m=0或m=-1或m=3.
又当m=3时,l1与l2重合,
故m=0或m=-1.]
6.D [设直线l与直线y=1的交点为A(x1,1),直线l与直线x-y-7=0的交点为B(x2,y2),因为M(1,-1)为AB的中点,所以-1=即y2=-3,代入直线x-y-7=0得
x2=4,因为点B,M都在直线l上,所以kl==-.故选D.]
7.2
解析 首先解得方程组的解为,
代入直线y=3x+b得b=2.
8.8x+16y+21=0
9.(-1,-2)
解析 直线方程可写成a(x+y+3)+2x-y=0,则该直线系必过直线x+y+3=0与直线2x-y=0的交点,即(-1,-2).
10.解 (1)2x+y-8=0在x轴、y轴上的截距分别是4和8,符合题意.
(2)当l的方程不是2x+y-8=0时,
设l:(x-2y+1)+λ(2x+y-8)=0,
即(1+2λ)x+(λ-2)y+(1-8λ)=0.
据题意,1+2λ≠0,λ-2≠0.
令x=0,得y=-;令y=0,得x=-.
∴-=2·解之得λ=,此时y=x.
∴所求直线方程为2x+y-8=0或y=x.
11.解
如图,过D,E,F分别作EF,FD,DE的平行线,作出这些平行线的交点,就是△ABC的三个顶点A,B,C.
由已知得,直线DE的斜率
kDE==,所以kAB=.
因为直线AB过点F,所以直线AB的方程为
y-2=(x+1),即4x-5y+14=0.①
由于直线AC经过点E(3,1),且平行于DF,
同理可得直线AC的方程
5x-y-14=0.②
联立①,②,解得点A的坐标是(4,6).
同样,可以求得点B,C的坐标分别是(-6,-2),(2,-4).
因此,△ABC的三个顶点是A(4,6),B(-6,-2),C(2,-4).
12.解
如图所示,由已知,A应是BC边上的高线所在直线与∠A的角平分线所在直线的交点.
由,得,
故A(-1,0).
又∠A的角平分线为x轴,
故kAC=-kAB=-1,(也可得B关于y=0的对称点(1,-2).
∴AC方程为y=-(x+1),
又kBC=-2,
∴BC的方程为
y-2=-2(x-1),
由,得,
故C点坐标为(5,-6).
13.解 设原点关于l的对称点A的坐标为(a,b),由直线OA与l垂直和线段AO的中点在l上得
,解得,
∴A的坐标为(4,3).
∵反射光线的反向延长线过A(4,3),
又由反射光线过P(-4,3),两点纵坐标相等,故反射光线所在直线方程为y=3.
由方程组,解得,
∴反射光线与直线l的交点坐标为.
§3.3 直线的交点坐标与距离公式
3.3.1 两条直线的交点坐标
一、基础过关
1.两直线2x-y+k=0和4x-2y+1=0的位置关系为 ( )
A.垂直 B.平行 C.重合 D.平行或重合
2.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线的方程是
( )
A.2x+y-8=0 B.2x-y-8=0
C.2x+y+8=0 D.2x-y+8=0
3.直线ax+2y+8=0,4x+3y=10和2x-y=10相交于一点,则a的值为 ( )
A.1 B.-1 C.2 D.-2
4.两条直线l1:2x+3y-m=0与l2:x-my+12=0的交点在y轴上,那么m的值为( )
A.-24 B.6 C.±6 D.以上答案均不对
5.若集合{(x,y)|x+y-2=0且x-2y+4=0}?{(x,y)|y=3x+b},则b=________.
6.已知直线l过直线l1:3x-5y-10=0和l2:x+y+1=0的交点,且平行于l3:x+2y-5=0,则直线l的方程是______________.
7.判断下列各题中直线的位置关系,若相交,求出交点坐标.
(1)l1:2x+y+3=0,l2:x-2y-1=0;
(2)l1:x+y+2=0,l2:2x+2y+3=0;
(3)l1:x-y+1=0,l2:2x-2y+2=0.
8.求经过两直线2x+y-8=0与x-2y+1=0的交点,且在y轴上的截距为在x轴上截距的两倍的直线l的方程.
二、能力提升
9.若两条直线2x-my+4=0和2mx+3y-6=0的交点位于第二象限,则m的取值范围是
( )
A. B.(0,2)
C. D.
10.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,
-1),则直线l的斜率为 ( )
A. B. C.- D.-
11.当a取不同实数时,直线(2+a)x+(a-1)y+3a=0恒过一个定点,这个定点的坐标为________.
12.在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的角平分线所在直线的方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.
三、探究与拓展
13.一束平行光线从原点O(0,0)出发,经过直线l:8x+6y=25反射后通过点P(-4,3),求反射光线与直线l的交点坐标.
答案
1.D 2.A 3.B 4.C
5.2
6.8x+16y+21=0
7.解 (1)≠,所以方程组有唯一解,两直线相交,交点坐标为(-1,-1).
(2)=≠,所以方程组没有解,两直线平行.
(3)==,方程组有无数个解,两直线重合.
8.解 (1)2x+y-8=0在x轴、y轴上的截距分别是4和8,符合题意.
(2)当l的方程不是2x+y-8=0时,
设l:(x-2y+1)+λ(2x+y-8)=0,
即(1+2λ)x+(λ-2)y+(1-8λ)=0.
据题意,1+2λ≠0,λ-2≠0.
令x=0,得y=-;
令y=0,得x=-.
∴-=2·
解之得λ=,此时y=x.
即2x-3y=0.
∴所求直线方程为2x+y-8=0或2x-3y=0.
9.A 10.D
11.(-1,-2)
12.解 如图所示,由已知,A应是BC边上的高线所在直线与∠A
的角平分线所在直线的交点.
由,得,
故A(-1,0).
又∠A的角平分线为x轴,
故kAC=-kAB=-1,
∴AC所在直线方程为y=-(x+1),
又kBC=-2,∴BC所在直线方程为y-2=-2(x-1),
由,得,
故C点坐标为(5,-6).
13.解 设原点关于l的对称点A的坐标为(a,b),由直线OA与l垂直和线段AO的中点在l上得
,解得,
∴A的坐标为(4,3).
∵反射光线的反向延长线过A(4,3),
又由反射光线过P(-4,3),两点纵坐标相等,故反射光线所在直线方程为y=3.
由方程组,解得,
∴反射光线与直线l的交点坐标为.