4. 3.1空间直角坐标系(教案)
【教学目标】
让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法.
理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.
进一步培养学生的空间想象能力与确定性思维能力.
【教学重难点】
重点:求一个几何图形的空间直角坐标。
难点:空间直角坐标系的理解。
【教学过程】
情景导入
1. 确定一个点在一条直线上的位置的方法.
2. 确定一个点在一个平面内的位置的方法.
3. 如何确定一个点在三维空间内的位置?
例:如图26-2,在房间(立体空间)内如何确定电灯位置?
在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数.那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数.要确定电灯的位置,知道电灯到地面的距离、到相邻的两个墙面的距离即可.
(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)
教师:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定.为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可.例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3).
这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O—xyz,从而确定了空间点的位置.
二、合作探究、精讲点拨
1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义.
从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O—xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xO平面,yO平面,zOx平面.
教师进一步明确:
(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.
(2)将空间直角坐标系O—xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的,这样,三条轴上的单位长度直观上大致相等.
2. 空间直角坐标系O—xyz中点的坐标.
思考1:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?
在学生充分讨论思考之后,教师明确:
(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).
(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.
这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A(x,y,z).
教师进一步指出:空间直角坐标系O—xyz中任意点A的坐标的概念
对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)
思考2: (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?
(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?
解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z).
(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z).
三、典型例题
例1、在空间直角坐标系O—xyz中,作出点P(5,4,6).
注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).
变式练习: 已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
注意:此题可以由学生口答,教师点评.
解:A(0,0,0),B(12,0,0),D(0,8,0),A′(0,0,5),C(12,8,0),B′(12,0,5),D′(0,8,5),C′(12,8,5).
讨论:若以C点为原点,以射线CB,CD,CC′方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?
得出结论:建立不同的坐标系,所得的同一点的坐标也不同.
例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz后,试写出全部钠原子所在位置的坐标。
解:把图中的钠原子分成下、中、上三层来写它们所在位置的坐标。
下层原子全在xOy平面,它们所在位置的竖坐标全是0,所以下层的五个钠原子所在位置的坐标分别为:
(0,0,0),(1,0,0),(1,1,0),(0,1,0),(,,0),
中层的四个钠原子所在位置的坐标分别为:
(,0,),(1,,),(,1, ),(0,, )
上层的五个钠原子所在位置的坐标分别为:
(0,0,1),(1,0,1),(1,1,1),(0,1,1),(,,1)。
变式练习:在长方体OABC-D’A’B’C’中,∣OA∣=3,∣OC∣=4,∣OD∣=2,写出D 、C、 A 、B四点关于平面xOy对称的坐标。
注意:此题可以由学生口答,教师点评.
解:因为D在z轴上,且∣OD∣=2,它的竖坐标为2,它的横坐标与纵坐标都是零,所以D点的坐标是(0,0,2),点C在y轴上,且∣OC∣=4,所以点C的坐标为(0,4,0),点A的坐标为(3,0,2),B的坐标为(3,4,2)。所以D点对称点的坐标是(0,0,-2),点C对称点的坐标为(0,4,0),点A对称点的坐标为(3,0,-2),B的对称点坐标为(3,4,-2)。
四、反思总结:
五、当堂检测:
1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2).
2. 已知:长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
3. 写出坐标平面yOz上∠yOz平分线上的点的坐标满足的条件.
【板书设计】
一、空间直角坐标系
二、例题
例1
变式1
例2
变式2
【作业布置】作业:P138 2
4.3.1空间直角坐标系(导学案)
课前预习学案
预习目标
用类比的数学思想方法探索空间直角坐标系的建立方法.
理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.
预习内容
1. 如何确定一个点在一条直线上的位置? 。
2. 如何确定一个点在一个平面内的位置? 。
3.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴:x轴,y轴,z轴.这样就建立了 ,点O叫作 ,x轴、y轴、z轴叫作 ,这三条坐标轴中每两条确定一个坐标平面,分别称为 , , .
4.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为 。
5.空间任意点A的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点A在此 ,记作 。其中x 叫做点A的 ,y叫做点A的 ,z叫做点A的 。
6.空间两点间的距离公式 。
三、提出疑惑
;
;
。
课内探究学案
一、学习目标
让学生用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程.
理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.
学习重点:求一个几何图形的空间直角坐标。
学习难点:空间直角坐标系的理解。
二、学习过程
思考1: 如何确定一个点在三维空间内的位置?
例:如图26-2,在房间(立体空间)内如何确定电灯位置?
思考2:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?
思考3: (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?
在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?
典型例题
在空间直角坐标系O—xyz中,作出点P(5,4,6).
注意:在分析中紧扣坐标定义,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).
变式练习: 已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
讨论:若以C点为原点,以射线CB,CD,CC′方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?
例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz后,试写出全部钠原子所在位置的坐标。
变式练习:在长方体OABC-D′A′B′C′中,∣OA∣=3,∣OC∣=4,∣OD∣=2,写出D 、C、 A 、B四点关于平面xOy对称的坐标。
反思总结:
当堂检测:
1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2).
2. 已知:长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
3. 写出坐标平面yOz上∠yOz平分线上的点的坐标满足的条件.
课后练习与提高
1.在空间直角坐标系中,点,过点作平面的垂线,则的坐标为( )
A. B. C. D.
2.已知点,则点关于原点的对称点的坐标为( )
A. B.
C. D.
3.坐标原点到下列各点的距离最小的是( )
A. B. C. D.
在空间直角坐标系中,的所有点构成的图形是 .
5.点关于平面的对称点是 ,关于平面的对称点是 ,关于平面的对称点是 ,关于轴的对称点是 ,关于轴的对称点是 ,关于轴的对称点是 .
6. 求证:以,,为顶点的三角形是等腰直角三角形.
4.3.1 空间直角坐标系
(一)教学目标
1.知识与技能
(1)使学生深刻感受到空间直角坐标系的建立的背景
(2)使学生理解掌握空间中点的坐标表示
2.过程与方法
建立空间直角坐标系的方法与空间点的坐标表示
3.情态与价值观
通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性,培养学生类比和数列结合的思想.
(二)教学重点和难点
空间直角坐标系中点的坐标表示.
(三)教学设计
教学环节
教学内容
师生互动
设计意图
复习引入
(1)我们知道数轴上的任意一点M都可用对应一个实数x表示,建立了平面直角坐标系后,平面上任意一点M都可用对应一对有序实数(x,y)表示。那么假设我们对立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢?
师:启发学生联想思考,
生:感觉可以
师:我们不能仅凭感觉,我们要对它的认识从感性化提升到理性化.
让学生体会到点与数(有序数组)的对应关系.
概念形成
(2)空间直角坐标系该如何建立呢?
[1]
师:引导学生看图[1],单位正方体OABC – D′A′B′C′,让学生认识该空间直角系O –xyz中,什么是坐标原点,坐标轴以及坐标平面.
师:该空间直角坐标系我们称为右手直角坐标系.
体会空间直角坐标系的建立过程.
(3)建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?
[2]
师:引导学生观察图[2],
生:点M对应着唯一确定的有序实数组(x,y,z),x、y、z分别是P、Q、R在x、y、z轴上的坐标.
师:如果给定了有序实数组(x,y,z),它是否对应着空间直角坐标系中的一点呢/
生:(思考)是的
师:由上我们知道了空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M(x,y,z),x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标.
师:大家观察一下图[1],你能说出点O,A,B,C的坐标吗?
生:回答
学生从(1)中感性向理性过渡.
应用举例
(4)例1 如图,在长方体OABC – D′A′B′C′中,|OA| = 3,|OC| = 4,|OD′| = 2.写出D′、C、A′、B′四点的坐标.
解:D′在z轴上,且O D′ = 2,它的竖坐标是2;它的横坐标x与纵坐标y都是零,所以点D′的坐标是(0,0,2).
点C在y轴上,且O D′ = 4,它的纵坐标是4;它的横坐标x与竖坐标z都是零,所以点C的坐标是(0,4,0).
同理,点A′的坐标是(3,0,2).
点B′在xOy平面上的射影是B,因此它的横坐标x与纵坐标y同点B的横坐标x与纵坐标y相同.在xOy平面上,点B横坐标x = 3,纵坐标y = 4;点B′在z轴上的射影是D′,它的竖坐标与点D′的竖坐标相同,点D′
的竖坐标z = 2.
所点B′的坐标是(3,4,2)
例2结晶体的基本单位称为晶胞,图是食盐晶胞的示意图(可看成是八个棱长为的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子.如图,建立空间直角坐标系O – xyz后,试写出全部钠原子所在位置的坐标.
解:把图中的钠原子分成下、中、上三层来写它们所在位置的坐标.
下层的原子全部在xOy平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的坐标分别是(0,0,0),(1,0,0),(1,1,0),(0,1,0),;
中层的原子所在的平面平行于xOy平面,与z轴交点的竖坐标为,所以,这四个钠原子所在位置的坐标分别是,
;
上层的原子所在的平面平行于xOy平面,与z轴交点的竖坐标为1,所以,这五个钠原子所在位置的坐标分别是(0,0,1),(1,0,1),(1,1,1),(0,1,1),
师:让学生思考例一一会,学生作答,师讲评。
师:对于例二的讲解,主要是引导学生先要学会建立合适的空间直角坐标系,然后才涉及到点的坐标的求法。
生:思考例一、例二的一些特点。总结如何求出空间中的点坐标的方法。
学生在教师的指导下完成,加深对点的坐标的理解,例2更能体现出建立一个合适的空间直角系的重要性
(5)练习2 如图,长方体OABC – D′A′B′C′中,|OA| = 3,|OC| = 4,|OD′| = 3,A′C′于B′D′相交于点P.分别写出点C、B′、P的坐标.
师:大家拿笔完成练习2然后上黑板来讲解
生:完成
解:C、B′、P各点的坐标分别是(0,4,0),(3,4,3),
学生在原有小结的经验的基础上,动手操作,并且锻炼学生的口才
归纳总结
(6)今天通过这堂课的学习,你能有什么收获?
生:谈收获
师:总结
让学生的自信心得到增强
课外练习
布置作业见习案4.3的第一课时
学生独立完成
巩固所学知识
备选例题
例1 如图,长方体OABC – D′A′B′C′中,OA = 3,OC = 4,OD′= 3,A′B与AB′相交于点P,分别写出点C、B′、P的坐标.
【解析】C在y轴正半轴上,坐标C(0,4,0),
B′的横坐标与A点相同,纵坐标与C点相同,竖坐标与D′点相同,
所以B′(3,4,3).
P 为正方形的对角线交点,坐标为.
例2 如图,正方体ABCD – A1B1C1D1,E、F分别是BB1,D1B1的中点,棱长为1,求点E、F的坐标和B1关于原点D的对称点坐标.
【解析】由B(1,1,0),B1(1,1,1)
则中点E为,
由B1(1,1,1),D1(0,0,1),
则中点.
设B1关于点D的对称点M(x0,y0,z0),
即D为B1M的中点,因为D(0,0,0),
所以,
所以M (–1,–1,–1 ).
4.3.2 空间两点间的距离公式
(一)教学目标
1.知识与技能
使学生掌握空间两点间的距离公式
2.过程与方法
3.情态与价值观
通过空间两点间距离公式的推导,使学生经历从易到难,从特殊到一般的认识过程
(二)教学重点、难点
重点:空间两点间的距离公式;
难点:一般情况下,空间两点间的距离公式的推导。
(三)教学设计
教学环节
教学内容
师生互动
设计意图
复习引入
在平面上任意两点A (x1,y1),B (x2,y2)之间的距离的公式为|AB| =,那么对于空间中任意两点A (x1,y1,z1),B (x2,y2,z2)之间的距离的公式会是怎样呢?你猜猜?
师:只需引导学生大胆猜测,是否正确无关紧要。
生:踊跃回答
通过类比,充分发挥学生的联想能力。
概念形成
(2)空间中任间一点P (x,y,z)到原点之间的距离公式会是怎样呢?
师:为了验证一下同学们的猜想,我们来看比较特殊的情况,引导学生用勾股定理来完成
学生:在教师的指导下作答得出|OP| =.
从特殊的情况入手,化解难度
概念深化
(3)如果|OP| 是定长r,那么x2 + y2 + z2 = r2表示什么图形?
师:注意引导类比平面直角坐标系中,方程x2 + y2 = r2表示的图形中,方程x2 + y2 = r2表示图形,让学生有种回归感。
生:猜想说出理由
任何知识的猜想都要建立在学生原有知识经验的基础上,学生可以通过类比在平面直角系中,方程x2 + y2 = r2表示原点或圆,得到知识上的升华,提高学习的兴趣。
(4)如果是空间中任间一点P1 (x1,y1,z1)到点P2 (x2,y2,z2)之间的距离公式是怎样呢?
师生:一起推导,但是在推导的过程中要重视学生思路的引导。
得出结论:
|P1P2| =
人的认识是从特殊情况到一般情况的
巩固练习
1.先在空间直角坐标系中标出A、B两点,再求它们之间的距离:
(1)A(2,3,5),B(3,1,4);
(2)A(6,0,1),B(3,5,7)
2.在z轴上求一点M,使点M到点A(1,0,2)与点B(1,–3,1)的距离相等.
3.求证:以A(10,–1,6),B(4,1,9),C(2,4,3)三点为顶点的三角形是等腰三角形.
4.如图,正方体OABD – D′A′B′C′的棱长为a,|AN| = 2|CN|,|BM| = 2|MC′|.求MN的长.
教师引导学生作答
1.解析(1),图略
(2),图略
2.解:设点M的坐标是(0,0,z).
依题意,得
=
.
解得z = –3.
所求点M的坐标是(0,0,–3).
3.证明:根据空间两点间距离公式,得
,
.
因为7+7>,且|AB| = |BC|,所以△ABC是等腰三角形.
4.解:由已知,得点N的坐标为
,
点M的坐标为,于是
培养学生直接利用公式解决问题能力,进一步加深理解
课外练习
布置作业 见习案4.3的第二课时
学生独立完成
巩固深化所学知识
备选例题
例1 已知点A在y轴 ,点B(0,1,2)且,则点A的坐标为 .
【解析】由题意设A(0,y,0),则,
解得:y = 0或y = 2,故点A的坐标是(0,0,0)或(0,2,0)
例2 坐标平面yOz上一点P满足:(1)横、纵、竖坐标之和为2;(2)到点A?(3,2,5),B(3,5,2)的距离相等,求点P的坐标.
【解析】由题意设P(0,y,z),则
解得:
故点P的坐标为(0,1,1)
例3 在yOz平面上求与三个已知点A(3,1,2),B(4,–2,–2),C (0,5,1)等距离的点的坐标.
【解析】设P(0,y,z),由题意
所以
即,所以,
所以P的坐标是(0,1,–2).
§4.3 空间直角坐标系
4.3.1 空间直角坐标系
【课时目标】 1.了解空间直角坐标系的建系方式.2.掌握空间中任意一点的表示方法.3.能在空间直角坐标系中求出点的坐标.
1.如图所示,为了确定空间点的位置,我们建立空间直角坐标系:以单位正方体为载体,以O为原点,分别以射线OA、OC、OD′的方向为正方向,以线段OA、OC、OD′的长为单位长,建立三条数轴:x轴、y轴、z轴,这时我们说建立了一个______________________________,其中点O叫做________________,x轴、y轴、z轴叫做________________,通过每两个坐标轴的平面叫做________________,分别称为__________________________,通常建立的坐标系为右手直角坐标系,即________指向x轴的正方向,________指向y轴的正方向,________指向z轴的正方向.
2.空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的____________,y叫做点M的____________,z叫做点M的____________.
一、选择题
1.在空间直角坐标系中,点A(1,2,-3)关于x轴的对称点为( )
A.(1,-2,-3) B.(1,-2,3)
C.(1,2,3) D.(-1,2,-3)
2.设y∈R,则点P(1,y,2)的集合为( )
A.垂直于xOz平面的一条直线
B.平行于xOz平面的一条直线
C.垂直于y轴的一个平面
D.平行于y轴的一个平面
3.结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为的小正方体堆积成的正方体).其中实圆?代表钠原子,空间圆?代表氯原子.建立空间直角坐标系Oxyz后,图中最上层中间的钠原子所在位置的坐标是( )
A. B.(0,0,1)
C. D.
4.在空间直角坐标系中,点P(3,4,5)关于yOz平面的对称点的坐标为( )
A.(-3,4,5) B.(-3,-4,5)
C.(3,-4,-5) D.(-3,4,-5)
5.在空间直角坐标系中,P(2,3,4)、Q(-2,-3,-4)两点的位置关系是( )
A.关于x轴对称 B.关于yOz平面对称
C.关于坐标原点对称 D.以上都不对
6.点P(a,b,c)到坐标平面xOy的距离是( )
A. B.|a| C.|b| D.|c|
二、填空题
7.在空间直角坐标系中,下列说法中:①在x轴上的点的坐标一定是(0,b,c);②在yOz平面上的点的坐标一定可写成(0,b,c);③在z轴上的点的坐标可记作(0,0,c);④在xOz平面上的点的坐标是(a,0,c).其中正确说法的序号是________.
8.在空间直角坐标系中,点P的坐标为(1,,),过点P作yOz平面的垂线PQ,则垂足Q的坐标是______.
9.连接平面上两点P1(x1,y1)、P2(x2,y2)的线段P1P2的中点M的坐标为,那么,已知空间中两点P1(x1,y1,z1)、P2(x2,y2,z2),线段P1P2的中点M的坐标为____________________.
三、解答题
10.已知正方体ABCD-A1B1C1D1,E、F、G是DD1、BD、BB1的中点,且正方体棱长为1.请建立适当坐标系,写出正方体各顶点及E、F、G的坐标.
11.如图所示,已知长方体ABCD-A1B1C1D1的对称中心在坐标原点O,交于同一顶点的三个面分别平行于三个坐标平面,顶点A(-2,-3,-1),求其他七个顶点的坐标.
能力提升
12.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.试建立适当的空间直角坐标系,求出A、B、C、D、P、E的坐标.
13.如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD,试建立适当的空间直角坐标系,求出点A、B、C、D、E、F的坐标.
1.点坐标的确定实质是过此点作三条坐标轴的垂面,一个垂面与x轴交点的横坐标为该点的横坐标,一个垂面与y轴交点的纵坐标为该点的纵坐标,另一个垂面与z轴交点的竖坐标为该点的竖坐标.
2.明确空间直角坐标系中的对称关系,可简记作:“关于谁对称,谁不变,其余均相反;关于原点对称,均相反”.
①点(x,y,z)关于xOy面,yOz面,xOz面,x轴,y轴,z轴,原点的对称点依次为(x,y,-z),(-x,y,z),(x,-y,z),(x,-y,-z),(-x,y,-z),(-x,-y,z),(-x,-y,-z).
②点(x,y,z)在xOy面,yOz面,xOz面,x轴,y轴,z轴上的投影点坐标依次为(x,y,0),(0,y,z),(x,0,z),(x,0,0),(0,y,0),(0,0,z).
§4.3 空间直角坐标系
4.3.1 空间直角坐标系
答案
知识梳理
1.空间直角坐标系Oxyz 坐标原点 坐标轴 坐标平面
xOy平面、yOz平面、zOx平面 右手拇指 食指 中指
2.横坐标 纵坐标 竖坐标
作业设计
1.B [两点关于x轴对称,坐标关系:横坐标相同,纵竖坐标相反.]
2.A 3.A
4.A [两点关于平面yOz对称,坐标关系:横坐标相反,纵竖坐标相同.]
5.C [三坐标均相反时,两点关于原点对称.]
6.D 7.②③④ 8.(0,,)
9.
10.解
如图所示,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C(0,1,0),D(0,0,0),A1(1,0,1),B1(1,1,1),C1(0,1,1),D1(0,0,1),E,F,
G.
11.解 由于已经建立了空间直角坐标系,由图可直接求出各点的坐标:B(-2,3,-1),C(2,3,-1),D(2,-3,-1),A1(-2,-3,1),B1(-2,3,1),C1(2,3,1),D1(2,-3,1).
12.解 如图所示,以A为原点,以AB所在直线为x轴,AP所在直
线为z轴,过点A与xAz平面垂直的直线为y轴,建立空间直角坐标系.则相关各点的坐标分别是
A(0,0,0),B(1,0,0),C(,,0),D(,,0),P(0,0,2),E(1,,0).
13.解 因为AD与两圆所在的平面均垂直,OE∥AD,所以OE与两圆所在的平面也都垂直.
又因为AB=AC=6,BC是圆O的直径,所以△BAC为等腰直角三角形且AF⊥BC,BC=6.
以O为原点,OB、OF、OE所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则原点O及A、B、C、D、E、F各个点的坐标分别为O(0,0,0)、A(0,-3,0)、B(3,0,0)、C(-3,0,0)、D(0,-3,8)、E(0,0,8)、F(0,3,0).
4.3.2 空间两点间的距离公式
【课时目标】 1.掌握空间两点间的距离公式.2.理解空间两点间距离公式的推导过程和方法.3.能够用空间两点间距离公式解决简单的问题.
1.在空间直角坐标系中,给定两点P1(x1,y1,z1),P2(x2,y2,z2),则|P1P2|=________________________________________________________________________.
特别地:设点A(x,y,z),则A点到原点的距离为:|OA|=________________.
2.若点P1(x1,y1,0),P2(x2,y2,0),
则|P1P2|=______________________.
3.若点P1(x1,0,0),P2(x2,0,0),
则|P1P2|=________.
一、选择题
1.若A(1,3,-2)、B(-2,3,2),则A、B两点间的距离为( )
A. B.25 C.5 D.
2.在长方体ABCD-A1B1C1D1中,若D(0,0,0)、A(4,0,0)、B(4,2,0)、A1(4,0,3),则对角线AC1的长为( )
A.9 B. C.5 D.2
3.到点A(-1,-1,-1),B(1,1,1)的距离相等的点C(x,y,z)的坐标满足( )
A.x+y+z=-1 B.x+y+z=0
C.x+y+z=1 D.x+y+z=4
4.已知A(2,1,1),B(1,1,2),C(2,0,1),则下列说法中正确的是( )
A.A、B、C三点可以构成直角三角形
B.A、B、C三点可以构成锐角三角形
C.A、B、C三点可以构成钝角三角形
D.A、B、C三点不能构成任何三角形
5.已知A(x,5-x,2x-1),B(1,x+2,2-x),当|AB|取最小值时,x的值为( )
A.19 B.- C. D.
6.点P(x,y,z)满足=2,则点P在( )
A.以点(1,1,-1)为球心,以为半径的球面上
B.以点(1,1,-1)为中心,以为棱长的正方体内
C.以点(1,1,-1)为球心,以2为半径的球面上
D.无法确定
二、填空题
7.在空间直角坐标系中,正方体ABCD-A1B1C1D1的顶点A(3,-1,2),其中心M的坐标为(0,1,2),则该正方体的棱长为________.
8.已知P到直线AB中点的距离为3,其中A(3,5,-7),B(-2,4,3),则z=________.
9.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________.
三、解答题
10.在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.
11.如图所示,BC=4,原点O是BC的中点,点A的坐标为(,,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,求AD的长度.
能力提升
12.已知正方形ABCD、ABEF的边长都是1,且平面ABCD⊥平面ABEF,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a< ).
(1)求MN的长;
(2)当a为何值时,MN的长最小.
13.在长方体ABCD—A1B1C1D1中,|AB|=|AD|=3,|AA1|=2,点M在A1C1上,|MC1|=2|A1M|,N在D1C上且为D1C中点,求M、N两点间的距离.
空间中两点的距离公式,是数轴上和平面上两点间距离公式的进一步推广,反之,它可以适用于平面和数轴上两点间的距离的求解.设P1(x1,y1,z1),P2(x2,y2,z2),则d(P1,P2)=,当P1,P2两点落在了坐标平面内或与坐标平面平行的平面内时,此公式可转化为平面直角坐标系中的两点间距离公式,当两点落在坐标轴上时,则公式转化为数轴上两点间距离公式.
4.3.2 空间两点间的距离公式 答案
知识梳理
1.
2.
3.|x1-x2|
作业设计
1.C [|AB|==5.]
2.B [由已知求得C1(0,2,3),∴|AC1|=.]
3.B [|AC|=|BC|?(x+1)2+(y+1)2+(z+1)2=(x-1)2+(y-1)2+(z-1)2.即x+y+z=0.]
4.A [|AB|=,|BC|=,|AC|=1,
∴|AB|2+|AC|2=|BC|2.故构成直角三角形.]
5.C [|AB|==,∴当x=-=时,|AB|最小.]
6.C 7.
8.0或-4
解析 利用中点坐标公式,则AB中点C,|PC|=3,即
=3,
解得z=0或z=-4.
9.(0,-1,0)
解析 设M的坐标为(0,y,0),由|MA|=|MB|得(0-1)2+(y-0)2+(0-2)2=(0-1)2+(y+3)2+(0-1)2,整理得6y+6=0,
∴y=-1,即点M的坐标为(0,-1,0).
10.解 ∵点M在直线x+y=1(xOy平面内)上,
∴可设M(x,1-x,0).
∴|MN|=
=≥,
当且仅当x=1时取等号,
∴当点M坐标为(1,0,0)时,|MN|min=.
11.解 由题意得B(0,-2,0),C(0,2,0),
设D(0,y,z),则在Rt△BDC中,∠DCB=30°,
∴BD=2,CD=2,z=,y=-1.
∴D(0,-1,).
又∵A(,,0),
∴|AD|==.
12.解 ∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,AB⊥BE,
∴BE⊥平面ABCD,
∴AB、BC、BE两两垂直.
过点M作MG⊥AB,MH⊥BC,垂足分别为G、H,连接NG,易证NG⊥AB.
∵CM=BN=a,
∴CH=MH=BG=GN=a,
∴以B为原点,以AB、BE、BC所在的直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系Bxyz,则
M,
N.
(1)|MN|=
==,
(2)由(1)得,当a=时,|MN|最短,最短为,这时M、N恰好为AC、BF的中点.
13.解 如图分别以AB、AD、AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系.
由题意可知C(3,3,0),
D(0,3,0),∵|DD1|=|CC1|=2,
∴C1(3,3,2),D1(0,3,2),
∵N为CD1的中点,
∴N.
M是A1C1的三分之一分点且靠近A1点,∴M(1,1,2).
由两点间距离公式,得
|MN|==.
§4.3 空间直角坐标系
4.3.1 空间直角坐标系
一、基础过关
1.点P(5,0,-2)在空间直角坐标系中的位置是 ( )
A.y轴上 B.xOy平面上
C.xOz平面上 D.x轴上
2.设y∈R,则点P(1,y,2)的集合为 ( )
A.垂直于xOz平面的一条直线
B.平行于xOz平面的一条直线
C.垂直于y轴的一个平面
D.平行于y轴的一个平面
3.已知空间直角坐标系中有一点M(x,y,z)满足x>y>z,且x+y+z=0,则M点的位置是
( )
A.一定在xOy平面上
B.一定在yOz平面上
C.一定在xOz平面上
D.可能在xOz平面上
4.在空间直角坐标系中,点P(3,4,5)关于yOz平面的对称点的坐标为 ( )
A.(-3,4,5) B.(-3,-4,5)
C.(3,-4,-5) D.(-3,4,-5)
5.在空间直角坐标系中,点A(1,2,-3)关于x轴的对称点为________.
6.点P(-3,2,1)关于Q(1,2,-3)的对称点M的坐标是________.
7.已知正方体ABCD-A1B1C1D1,E、F、G分别是DD1、BD、BB1的中点,且正方体棱长为1.请建立适当坐标系,写出正方体各顶点及E、F、G的坐标.
8. 如图所示,长方体ABCD-A1B1C1D1的对称中心为坐标原点O,交于同一顶点的三个面分别平行于三个坐标平面,顶点A(-2,-3, -1),求其它7个顶点的坐标.
二、能力提升
9.在空间直角坐标系中,P(2,3,4)、Q(-2,-3,-4)两点的位置关系是 ( )
A.关于x轴对称 B.关于yOz平面对称
C.关于坐标原点对称 D.以上都不对
10.如图,在正方体ABCD—A′B′C′D′中,棱长为1,|BP|=|BD′|,则P点的坐标为
( )
A. B. C. D.
11.连接平面上两点P1(x1,y1)、P2(x2,y2)的线段P1P2的中点M的坐标为,那么,已知空间中两点P1(x1,y1,z1)、P2(x2,y2,z2),线段P1P2的中点M的坐标为_________.
12. 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD,试建立适当的空间直角坐标系,求出点A、B、C、D、E、F的坐标.
三、探究与拓展
13. 如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.试建立适当的空间直角坐标系,求出A、B、C、D、P、E的坐标.
答案
1.C 2.A 3.D 4.A
5.(1,-2,3) 6.(5,2,-7)
7.解 如图所示,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C(0,1,0),D(0,0,0),A1(1,0,1),B1(1,1,1),C1(0,1,1),D1(0,0,1),E,F,G.
8.解 长方体的对称中心为坐标原点O,因为顶点坐标A(-2,-3,-1),所以A关于原点的对称点C1的坐标为(2,3,1).
又因为C与C1关于坐标平面xOy对称,
所以C(2,3,-1).
而A1与C关于原点对称,所以A1(-2,-3,1).
又因为C与D关于坐标平面xOz对称,所以D(2,-3,-1).
因为B与C关于坐标平面yOz对称,所以B(-2,3,-1).
B1与B关于坐标平面xOy对称,所以B1(-2,3,1).
同理D1(2,-3,1).
综上可知长方体的其它7个顶点坐标分别为:C1(2,3,1),C(2,3,-1),A1(-2,-3,1),B(-2,3,-1),B1(-2,3,1),D(2,-3,-1),D1(2,-3,1).
9.C 10.D
11.
12.解 因为AD与两圆所在的平面均垂直,OE∥AD,所以OE与两圆所在的平面也都垂直.
又因为AB=AC=6,BC是圆O的直径,所以△BAC为等腰直角三角形且AF⊥BC,BC=6.
以O为原点,OB、OF、OE所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则原点O及A、B、C、D、E、F各个点的坐标分别为O(0,0,0)、A(0,-3,0)、B(3,0,0)、C(-3,0,0)、D(0,-3,8)、E(0,0,8)、F(0,3,0).
13.解 如图所示,以A为原点,以AB所在直线为x轴,AP所在直
线为z轴,过点A与xAz平面垂直的直线为y轴,建立空间直角坐标系.则相关各点的坐标分别是A(0,0,0),B(1,0,0),
C(,,0),D(,,0),P(0,0,2),
E(1,,0).
4.3.2 空间两点间的距离公式
一、基础过关
1.若A(1,3,-2)、B(-2,3,2),则A、B两点间的距离为 ( )
A. B.25 C.5 D.
2.在长方体ABCD-A1B1C1D1中,若D(0,0,0)、A(4,0,0)、B(4,2,0)、A1(4,0,3),则对角线AC1的长为 ( )
A.9 B. C.5 D.2
3.已知点A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离|CM|等于 ( )
A. B. C. D.
4.到点A(-1,-1,-1),B(1,1,1)的距离相等的点C(x,y,z)的坐标满足 ( )
A.x+y+z=-1 B.x+y+z=0
C.x+y+z=1 D.x+y+z=4
5.若点P(x,y,z)到平面xOz与到y轴距离相等,则P点坐标满足的关系式为____________.
6.已知P到直线AB中点的距离为3,其中A(3,5,-7),B(-2,4,3),则z=________.
7.在yOz平面上求与三个已知点A(3,1,2),B(4,-2,-2),C(0,5,1)等距离的点的坐标.
8. 如图所示,BC=4,原点O是BC的中点,点A的坐标为(,,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,求AD的长度.
二、能力提升
9.已知A(2,1,1),B(1,1,2),C(2,0,1),则下列说法中正确的是 ( )
A.A、B、C三点可以构成直角三角形
B.A、B、C三点可以构成锐角三角形
C.A、B、C三点可以构成钝角三角形
D.A、B、C三点不能构成任何三角形
10.已知A(x,5-x,2x-1),B(1,x+2,2-x),当|AB|取最小值时,x的值为 ( )
A.19 B.- C. D.
11.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________.
12. 在长方体ABCD—A1B1C1D1中,|AB|=|AD|=3,|AA1|=2,点M在A1C1上,|MC1|=2|A1M|,N在D1C上且为D1C的中点,求M、N两点间的距离.
三、探究与拓展
13.在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.
答案
1.C 2.B 3.B 4.B
5.x2+z2-y2=0 6.0或-4
7.解 设P(0,y,z),由题意
所以
即,所以,
所以点P的坐标是(0,1,-2).
8.解 由题意得B(0,-2,0),C(0,2,0),
设D(0,y,z),则在Rt△BDC中,∠DCB=30°,
∴BD=2,CD=2,z=,y=-1.
∴D(0,-1,).又∵A(,,0),
∴|AD|
==.
9.A 10.C
11.(0,-1,0)
12.解 如图分别以AB、AD、AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系.
由题意可知C(3,3,0),
D(0,3,0),∵|DD1|=|CC1|=2,
∴C1(3,3,2),D1(0,3,2),
∵N为CD1的中点,∴N.
M是A1C1的三等分点且靠近A1点,
∴M(1,1,2).
由两点间距离公式,得|MN|
=
=.
13.解 ∵点M在直线x+y=1(xOy平面内)上,∴可设M(x,1-x,0).
∴|MN|=
=≥,
当且仅当x=1时取等号,
∴当点M的坐标为(1,0,0)时,
|MN|min=.
课件21张PPT。4.3 空间直角坐标系 4.3.1 空间直角坐标系 问题提出 对于直线上的点,我们可以通过数轴来确定点的位置;对于平面上的点,我们可以通过平面直角坐标系来确定点的位置;对于空间中的点,我们也希望建立适当的坐标系来确定点的位置. 因此,如何在空间中建立坐标系,就成为我们需要研究的课题.空间直角坐标系知识探究(一):空间直角坐标系 思考1:数轴上的点M的坐标用一个实数x表示,它是一维坐标;平面上的点M的坐标用一对有序实数(x,y)表示,它是二维坐标.设想:对于空间中的点的坐标,需要几个实数表示?思考2:平面直角坐标系由两条互相垂直的数轴组成,设想:空间直角坐标系由几条数轴组成?其相对位置关系如何? 三条交于一点且两两互相垂直的数轴 思考3:在空间中,取三条交于一点且两两互相垂直的数轴:x轴、y轴、z轴,组成空间直角坐标系Oxyz,在平面上如何画空间直角坐标系? ∠xOy=135°∠yOz=90° 思考4:在空间直角坐标系中,对三条数轴的方向作如下约定:伸出右手,拇指指向为x轴正方向,食指指向为y轴正方向,中指指向为z轴正方向,并称这样的坐标系为右手直角坐标系.那么下列空间直角坐标系中哪些是右手直角坐标系?思考5:在空间直角坐标系Oxyz中,其中点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,并分别称为xOy平面、yOz平面、xOz平面.这三个坐标平面的位置关系如何?思考6:如图,在长方体ABCD-A1B1C1D1中,以点D为坐标原点建立空间右手直角坐标系,那么x轴、y轴、z轴
应如何选取?思考7:在空间直角坐标系Oxyz中,三个坐标平面将空间分成几个部分?知识探究(二)空间直角坐标系中点的坐标 思考1:在平面直角坐标系中,点M的横坐标、纵坐标的含义如何? 思考2:在空间直角坐标系中,设点M为空间的一个定点,过点M分别作垂直于x轴、y轴、z轴的平面,垂足为A、B、C. 设点A、B、C在x轴、y轴、z轴上的坐标分别为x、y、z,那么点M的位置与有序实数组(x,y,z)是一个什么对应关系? 思考3:上述有序实数组(x,y,z)称为点M的空间坐标,其中x、y、z分别叫做点M的横坐标、纵坐标、
竖坐标,这三个坐标的值一定是正数吗?xyz思考4:x轴、y轴、z轴上的点的坐标有何特点?xOy平面、yOz平面、xOz平面上的点的坐标有何特点?x轴上的点:(x,0,0)xOy平面上的点:(x,y,0)思考5:设点M的坐标为(a,b,c)过点M分别作xOy平面、yOz平面、xOz平面的垂线,那么三个垂足的坐标分别如何?A(a,b,0)B(0,b,c)C(a,0,c)思考6:设点M的坐标为(x,y,z)那么点M关于x轴、y轴、z轴及原点对称的点的坐标分别是什么?M(x,y,z)N(x,-y,-z)思考7:设点A(x1,y1,z1),点 B(x2,y2,z2),则线段AB的中点M的坐标如何?理论迁移 例1 如图,在长方体OABC-D′A′B′C′中,|OA|=3,|OC|=4,
|OD′|=2,写出长方体各顶点的坐标. 例2 结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成是八个棱长为0.5的小正方体堆积成的正方体),其中色点代表钠原子,白点代表氯原子.如图建立直角坐标系Oxyz,试写出全部钠原子所在位置的坐标.作业:
P136练习:1,2,3.
P138习题4.3A组:2. 课件15张PPT。4.3.2 空间两点间的距离公式 问题提出 1. 在平面直角坐标系中两点间的距离公式是什么? 2. 在空间直角坐标系中,若已知两个点的坐标,则这两点之间的距离是惟一确定的,我们希望有一个求两点间距离的计算公式,对此,我们从理论上进行探究.空间两点间的距离公式知识探究(一):与坐标原点的距离公式 思考1:在空间直角坐标系中,坐标轴上的点A(x,0,0),B(0,y,0),C(0,0,z),与坐标原点O的距离分别是什么?|OA|=|x||OB|=|y||OC|=|z|思考2:在空间直角坐标系中,坐标平面上的点A(x,y,0),B(0,y,z),C(x,0,z),与坐标原点O的距离分别是什么?思考3:在空间直角坐标系中,设点 P(x,y,z)在xOy平面上的射影为M,则点M的坐标是什么?|PM|,|OM|的值分别是什么?M(x,y,0)|PM|=|z|思考4:基于上述分析,你能得到点 P(x,y,z)与坐标原点O的距离公式吗?思考5:在空间直角坐标系中,方程 x2+y2+z2=r2(r>0为常数)表示什么图形是什么? 知识探究(二):空间两点间的距离公式 在空间中,设点P1(x1,y1,z1),P2(x2,y2,z2)在xOy平面上的射影分别为M、N.思考1:点M、N之间的距离如何?思考2:若直线P1P2垂直于xOy平面,则点P1、P2之间的距离如何?|P1P2|=|z1-z2|思考3:若直线P1P2平行于xOy平面,则点P1、P2之间的距离如何?思考4:若直线P1P2 是xOy平面的一条斜线,则点P1、P2的距离如何计算? 例1 在空间中,已知点A(1, 0, -1),B (4, 3, -1),求A、B两点之间的距离.理论迁移 例2 已知两点 A(-4, 1, 7)和B(3, 5, -2),点P在z轴上,若|PA|=|PB|,求点P的坐标. 例3 如图,点P、Q分别在棱长为1的正方体的对角线AB和棱CD上运动,求P、Q两点间的距离的最小值,并指出此时P、Q两点的位置. 作业:
P138练习:1,2,3,4.