人教版高中数学必修三教学资料,补习资料:1.1.1算法的概念(2份)

文档属性

名称 人教版高中数学必修三教学资料,补习资料:1.1.1算法的概念(2份)
格式 zip
文件大小 5.5MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-08-27 21:54:36

文档简介

1. 1.1 算法的概念
【教学目标】
1.了解算法的含义,体会算法的思想。
2.能够用自然语言叙述算法。
3.掌握正确的算法应满足的要求。
【重点与难点】
教学重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
教学难点:把自然语言转化为算法语言。
【教学过程】
1.情境导入:
算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。
2.探索研究
算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。
3.例题分析
例1. 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
解析:根据质数的定义判断
解:算法如下:
第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。
第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。
这是判断一个大于1的整数n是否为质数的最基本算法。
点评:通过例1明确算法具有两个主要特点:有限性和确定性。
变式训练1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
解:算法或步骤如下:
S1 人带两只狼过河;
S2 人自己返回;
S3 人带一只羚羊过河;
S4 人带两只狼返回;
S5 人带两只羚羊过河;
S6 人自己返回;
S7 人带两只狼过河;
S8 人自己返回;
S9 人带一只狼过河.
例2 给出求解方程组的一个算法.
解析:解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,在通过回代过程求出方程组的解)解线性方程组.
解:用消元法解这个方程组,步骤是:
第一步:方程①不动,将方程②中的系数除以方程①中的系数,得到乘数;
第二步:方程②减去乘以方程①,消去方程②中的项,得到

第三步:将上面的方程组自下而上回代求解,得到,.
所以原方程组的解为.
点评:通过例2再次明确算法特点:有限性和确定性
变式训练2:写出求过两点M(-2,-1)、N(2,3)的直线与坐标轴围成面积的一个算法。
解:算法:第一步:取x1=-2,y1=-1,x2=2,y2=3;
第二步:计算;
第三步:在第二步结果中令x=0得到y的值m,得直线与y轴交点(0,m);
第四步:在第二步结果中令y=0得到x的值n,得直线与x轴交点(n,0);
第五步:计算S=;
第六步:输出运算结果
例3 用二分法设计一个求解方程x2–2=0的近似根的算法。
算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.005,则不难设计出以下步骤:
第一步:令f(x)=x2–2。因为f(1)<0,f(2)>0,所以设x1=1,x2=2。
第二步:令m=(x1+x2)/2,判断f(m)是否为0,若则,则m为所长;若否,则继续判断f(x1)·f(m)大于0还是小于0。
第三步:若f(x1)·f(m)>0,则令x1=m;否则,令x2=m。
第四步:判断|x1–x2|<0.005是否成立?若是,则x1、x2之间的任意取值均为满足条件的近似根;若否,则返回第二
点评:渗透循环的思想,为后面教学做铺垫。
变式训练3 给出求1+2+3+4+5的一个算法.
解: 算法1 按照逐一相加的程序进行.
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6;
第三步:将第二步中的运算结果6与4相加,得到10;
第四步:将第三步中的运算结果10与5相加,得到15.
算法2 运用公式直接计算.
第一步:取=5;
第二步:计算;
第三步:输出运算结果.
算法3 用循环方法求和.
第一步:使,;
第二步:使;
第三步:使;
第四步:使;
第五步:如果,则返回第三步,否则输出.
点评:一个问题的算法可能不唯一.
4.回顾小结
1.算法的概念:对一类问题的机械的、统一的求解方法.算法是由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题.
2.算法的重要特征:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确定性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的
算法是毫无意义的.
5.课后作业
写出求的一个算法
解:第一步:使,;
第二步:使;
第三步:使;
第四步:使;
第五步:使;
第六步:如果,则返回第三步,否则输出.
1.1.1. 算法的概念
课前预习学案
一、预习目标:了解算法的含义,体会算法的思想。
二、预习内容:
1.算法的概念及其特点
2.判断一个数为质数的算法设计
三、提出疑惑:如何快速准确的写出一个问题的算法?
课内探究学案
一、学习目标:
1.了解算法的含义,体会算法的思想;
2.能够用自然语言叙述算法;
3.知道算法应满足的要求。
二、学习重点:算法的含义、判断一个数为质数的算法设计。
学习难点:把自然语言转化为算法语言。
三、学习过程:
(一)、自主学习:
1.算法的概念
2.算法的重要特征:
(二)、例题分析:
例1. 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定
变式训练1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
例2 给出求解方程组的一个算法.
变式训练2:写出求过两点M(-2,-1)、N(2,3)的直线与坐标轴围成面积的一个算法。
例3 用二分法设计一个求解方程x2–2=0的近似根的算法。
变式训练3 给出求1+2+3+4+5的一个算法
(三)、回顾小结:
(1)算法的概念
(2)算法的重要特征
(四)、当堂检测:
写出求的一个算法
解:第一步:使,;
第二步:使;
第三步:使;
第四步:使;
第五步:使;
第六步:如果,则返回第三步,否则输出.
课后练习与提高:
1. 下列关于算法的说法中,正确的是(???????? ).
   A. 算法就是某个问题的解题过程 B. 算法执行后可以不产生确定的结果
   C. 解决某类问题的算法不是惟一的 D. 算法可以无限地操作下去不停止
2.有一堆形状大小相同的珠子,其中只有一粒质量比其他的轻,某同学利用科学的算法,两次利用天平找出这粒最轻的珠子,则这堆珠子最多有多少粒( )
A. 4 B.5 C.7 D.9
3下列各式中的S值不可以用算法求解的是( )
A.S=1+2+3+4
B.S=1+2+3+4+….
C.S=
D.S=1+2+3+4+…+100
4.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99。求它的总分和平均分的一个算法为:
第一步:取A=89,B=99;
第二步:
第三步:
第四步:输出计算结果。
5.写出解方程2x+3=0的算法。
第一步:
第二步:
第三步:
6. 给出一个判断点P是否在直线y=x-1上的一个算法。

课件28张PPT。1-1-1算法的概念
一、选择题
1.以下关于算法的说法正确的是(  )
A.描述算法可以有不同的方式,可用形式语言也可用其它语言
B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题
C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果
D.算法要求按部就班地做,每一步可以有不同的结果
[答案] A
[解析] 算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题.算法过程要求一步一步执行,每一步执行的操作,必须确切,只能有惟一结果,而且经过有限步后,必须有结果输出后终止,描述算法可以有不同的语言形式,如自然语言、框图语言及形式语言等.
2.下列对算法的理解不正确的是(  )
A.算法有一个共同特点就是对一类问题都有效(而不是个别问题)
B.算法要求是一步步执行,每一步都能得到唯一的结果
C.算法一般是机械的,有时要进行大量重复的计算,它的优点是一种通法
D.任何问题都可以用算法来解决
[答案] D
[解析] 算法是解决问题的精确的描述,但是并不是所有问题都有算法,有些问题使用形式化、程序化的刻画是最恰当的.
3.使用计算机解题的步骤由以下几部分构成
①寻找解题方法 ②调试运行
③设计正确算法 ④正确理解题意
⑤编写程序
正确的顺序为(  )
A.④①③②⑤ B.④①③⑤②
C.④③②①⑤ D.④①②③⑤
[答案] B
4.下列四种自然语言叙述中,能称作算法的是(  )
A.在家里一般是妈妈做饭
B.做米饭需要刷锅、淘米、添水、加热这些步骤
C.在野外做饭叫野炊
D.做饭必须要有米
[答案] B
[解析] 算法是做一件事情或解决一个问题等的程序或步骤,故选B.
5.阅读下面的四段话,其中不是解决问题的算法的是(  )
A.求1×2×3的值,先计算1×2=2,再计算2×3=6,最终结果为6
B.解一元一次不等式的步骤是移项、合并同类项、未知数的系数化为1
C.方程x2-2x-3=0有两个实数根
D.某同学判断直线与圆的位置关系时,第一步求圆心C的坐标和半径r,第二步求C到直线的距离d,第三步比较d与r的大小,第四步下结论.
[答案] C
6.下列各式中S值不可以用算法求解的是(  )
A.S=1+2+3+4
B.S=12+22+32+…+1002
C.S=1++…+
D.S=1+2+3+4+…
[答案] D
[解析] 由算法的有限性知,D不正确,而A、B、C都可以通过有限步骤操作,输出确定结果,故选D.
7.结合下面的算法:
第一步,输入x.
第二步,判断x是否小于0,若是,则输出x+2,否则执行第三步.
第三步,输出x-1.
当输入的x的值为-1,0,1时,输出的结果分别为(  )
A.-1,0,1 B.-1,1,0
C.1,-1,0 D.0,-1,1
[答案] C
[解析] 根据x值与0的关系,选择执行不同的步骤,当x的值为-1,0,1时,输出的结果应分别为1,-1,0,故选C.
8.给出下列算法:[来源:学,
第一步,输入正整数n(n>1).
第二步,判断n是否等于2,若n=2,则输出n;若n>2,则执行第三步.
第三步,依次从2到n-1检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.
第四步,输出n.
则输出的n的值是(  )
A.奇数 B.偶数
C.质数 D.合数
[答案] C
[解析] 根据算法可知n=2时,输出n的值2;若n=3,输出n的值3;若n=4,2能整除4,则重新输入n的值……,故输出的n的值为质数.
9.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用的分钟数为(  )
A.13 B.14
C.15 D.23
[答案] C
[解析] ①洗锅盛水2分钟、②用锅把水烧开10分钟(同时②洗菜6分钟、③准备面条及佐料2分钟)、⑤煮面条3分钟,共为15分钟.
10.已知两个单元分别存放了变量x和y,下面描述交换这两个变量的值的算法中正确的为(  )
A.第一步 把x的值给y;第二步 把y的值给x.
B.第一步 把x的值给t;第二步 把t的值给y;第三步 把y的值给x.
C.第一步 把x的值给t;第二步 把y的值给x;第三步 把t的值给y.
D.第一步 把y的值给x;第二步 把x的值给t;第三步 把t的值给y.
[答案] C[来源XK]
[解析] 为了达到交换的目的,需要一个中间变量t,通过t使两个变量来交换.
第一步 先将x的值赋给t(这时存放x的单元可以再利用);
第二步 再将y的值赋给x(这时存放y的单元可以再利用);
第三步 最后把t的值赋给y,两个变量x和y的值便完成了交换.
[点评] 这好比有一碗酱油和一碗醋.我们要把这两碗盛装的物品交换过来,需要一个空碗(即t);先把醋(或酱油)倒入空碗,再把酱油(或醋)倒入原来盛醋(或酱油)的碗,最后把倒入空碗中的醋(或酱油)倒入原来盛酱油(或醋)的碗,就完成了交换.
二、填空题
11.完成解不等式2x+2<4x-1的算法:
第一步,移项并合并同类项,得________.
第二步,在不等式的两边同时除以x的系数,得________.
[答案] -2x<-3 x>
12.给出下列算法:
第一步,输入x的值.
第二步,当x>4时,计算y=x+2;否则执行下一步.
第三步,计算y=.
第四步,输出y.[来源:学
当输入x=0时,输出y=________.
[答案] 2
[解析] 由于x=0>4不成立,故计算y==2,输出y=2.
13.请说出下面算法要解决的问题________.
第一步,输入三个数,并分别用a、b、c表示;
第二步,比较a与b的大小,如果a第三步,比较a与c的大小,如果a第四步,比较b与c的大小,如果b第五步,输出a、b、c.
[答案] 输入三个数a,b,c,并按从大到小顺序输出.
[解析] 第一步是给a、b、c赋值.
第二步运行后a>b.
第三步运行后a>c.
第四步运行后b>c,∴a>b>c.
第五步运行后,显示a、b、c的值,且从大到小排列.
14.已知A(x1,y1),B(x2,y2),求直线AB的斜率的一个算法如下:
第一步 输入x1、y1、x2、y2的值.
第二步 计算Δx=x2-x1,Δy=y2-y1
第三步 若Δx=0,则输出斜率不存在,否则(Δx≠0),k=____①____.
第四步 输出斜率k.
则①处应填________.
[答案] 
三、解答题
15.写出求任意给出的4个数a、b、c、d的平均数的一个算法.
[解析] 第一步,输入这4个数a、b、c、d的值;
第二步,计算S=a+b+c+d;[来K]
第三步,计算V=;[来源:Zxxk.Com]
第四步,输出V的值.
16.设计一个求一元二次方程ax2+bx+c=0(a≠0)的根的算法.
[解析] 第一步,计算Δ=b2-4ac.
第二步,若Δ<0成立,输出方程无实根,否则执行下一步.
第三步,计算并输出方程的根x1,2=.
17.已知球的表面积为16π,求球的体积.写出解决该问题的两个算法.
[分析] 由球的表面积公式可求得半径R,再由球的体积公式可求得体积,也可由球的表面积与半径的关系,及体积与半径的关系得到体积与表面积的关系,进而直接求解.
[解析] 算法1如下:
第一步,取S=16π. 第二步,计算R=.
第三步,计算V=πR3. 第四步,输出V的值.
算法2如下:
第一步,取S=16π. 第二步,计算V=π3.
第三步,输出V的值.
18.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜.设计安全过河的算法.
[解析] 第一步,人带羊过河.
第二步,人自己返回.
第三步,人带青菜过河.
第四步,人带羊返回.
第五步,人带狼过河.
第六步,人自己返回.
第七步,人带羊过河.
1.1.1 算法的概念
教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.
教学重点:解二元一次方程组等几个典型的的算法设计.
教学难点:算法的含义、把自然语言转化为算法语言.
教学过程:
一、复习准备:
1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)
2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:
A.确定区间,验证,给定精度ε;B. 求区间的中点;
C. 计算: 若,则就是函数的零点; 若,则令(此时零点); 若,则令(此时零点);
D. 判断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.
二、讲授新课:
1. 教学算法的含义:
① 出示例:写出解二元一次方程组的具体步骤.
先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法
第一步:②-①×2,得5y=0 ③; 第二步:解③得y=0; 第三步:将y=0代入①,得x=2.
② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序.
算法特点:确定性;有限性;顺序性;正确性;普遍性.
举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.
③ 练习:写出解方程组的算法.
2. 教学几个典型的算法:
出示例1:任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.
提问:什么叫质数?如何判断一个数是否质数? → 写出算法.
分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.
② 出示例2:用二分法设计一个求方程的近似根的算法.
提问:二分法的思想及步骤?如何求方程近似解 →写出算法.
③ 练习:举例更多的算法例子; → 对比一般解决问题的过程,讨论算法的主要特征.
3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.
三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值
2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.
高中新课程数学必修③
1.1.1 算法的概念
一、三维目标:
1.知识与技能:
(1)了解算法的含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。(4)会写出解线性方程(组)的算法。(5)会写出一个求有限整数序列中的最大值的算法。(6)会应用Scilab求解方程组。
2.过程与方法:
通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3.情感态度与价值观:
通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:
重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、教学设想:
(一)问题提出:
一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳。试问他们怎样渡过河去?请写出一个渡河方案。
第一步,两个小孩同船过河去;
第二步,一个小孩划船回来;
第三步,一个大人划船过河去;
第四步,对岸的小孩划船回来;
第五步,两个小孩同船渡过河去。
(二)算法的概念
思考1:在初中,对于解二元一次方程组你学过哪些方法?(加减消元法和代入消元法)
思考2:用加减消元法解二元一次方程组的具体步骤是什么?
思考3:参照上述思路,一般地,解方程组的基本步骤是什么?
小结:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”。我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组。
在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法。
(三)算法的步骤设计
思考1:如果让计算机判断7是否为质数,如何设计算法步骤?
第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
思考2:如果让计算机判断35是否为质数,如何设计算法步骤?
第一步,用2除35,得到余数1,所以2不能整除35.
第二步,用3除35,得到余数2,所以3不能整除35.
第三步,用4除35,得到余数3,所以4不能整除35.
第四步,用5除35,得到余数0,所以5能整除35.
因此,35不是质数.
思考3:整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?
第一步,用2除89,得到余数1,所以2不能整除89.
第二步,用3除89,得到余数2,所以3不能整除89.
第三步,用4除89,得到余数1,所以4不能整除89.
…… …… …… ……
第八十七步,用88除89,得到余数1,所以88不能整除89.
因此,89是质数.
思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.
算法分析:
(1)用i表示2~88中的任意一个整数,并从2开始取数;
(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i+1替代,再执行同样的操作;
(3)这个操作一直进行到i取88为止.
(四)理论迁移
例 用二分法设计一个求方程x2–2=0的近似根的算法。
算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.005,则不难设计出以下步骤:
第一步:令f(x)=x2–2.因为f(1)<0,f(2)>0,所以设x1=1,x2=2.
第二步:令m=(x1+x2)/2,判断f(m)是否为0,若则,则m为所求;若否,则继续判断f(x1)·f(m)大于0还是小于0.
第三步:若f(x1)·f(m)>0,则令x1=m;否则,令x2=m.
第四步:判断|x1–x2|<0.005是否成立?若是,则x1、x2之间的任意取值均为满足条件的近似根;若否,则返回第二步.
小结:算法是建立在解法基础上的操作过程,算法不一定要有运算结果,问题答案可以由计算机解决.设计一个解决某类问题的算法的核心内容是设计算法的步骤,它没有一个固定的模式,但有几个基本要求。
小结:算法具有以下特性:(1)有穷性;(2)确定性;(3)顺序性;(4)不惟一性;(5)普遍性
(五)基础知识应用题
思考1:有人对哥德巴赫猜想“任何大于4的偶数都能写成两个质数之和”设计了如下操作步骤:
第一步,检验6=3+3,
第二步,检验8=3+5,
第三步,检验10=5+5,
……
利用计算机无穷地进行下去!
请问:这是一个算法吗?
思考2:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物。没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。设计过河的算法;
解:算法或步骤如下:
S1 人带两只狼过河 S2 人自己返回
S3 人带一只羚羊过河 S4 人带两只狼返回
S5 人带两只羚羊过河 S6 人自己返回
S7 人带两只狼过河 S8 人自己返回带一只狼过河
五、课堂小结
本节课主要讲了算法的概念,算法就是解决问题的步骤,平时列论我们做什么事都离不开算法,算法的描述可以用自然语言,也可以用数学语言。
课件89张PPT。问题提出问题提出问题提出问题提出问题提出问题提出算法的概念①+②×2,得 5x=1 . ③①+②×2,得 5x=1 . ③①+②×2,得 5x=1 . ③②-①×2,得 5y=3 . ④ ①+②×2,得 5x=1 . ③②-①×2,得 5y=3 . ④ ①+②×2,得 5x=1 . ③②-①×2,得 5y=3 . ④ ①+②×2,得 5x=1 . ③②-①×2,得 5y=3 . ④ 第一步,①+②×2,得 5x=1 . ③②-①×2,得 5y=3 . ④ 第一步,第二步,①+②×2,得 5x=1 . ③②-①×2,得 5y=3 . ④ 第一步,第二步,第三步,①+②×2,得 5x=1 . ③②-①×2,得 5y=3 . ④ 第一步,第二步,第三步,第四步,①+②×2,得 5x=1 . ③②-①×2,得 5y=3 . ④ 第一步,第二步,第三步,第四步,第五步,第五步,得到方程组的解为 第一步, 令i=2; 第一步, 令i=2; 第一步, 第二步, 用i除89,得到余数r; 令i=2; 第一步, 第二步, 用i除89,得到余数r; 令i=2; 第一步, 第三步, 第二步, 用i除89,得到余数r; 令i=2; 第一步, 第三步, 第二步, 用i除89,得到余数r; 令i=2; 第一步, 第四步, 第三步, 第二步, 用i除89,得到余数r; 令i=2; 第一步, 第四步, 第三步, 第二步, 第一步,给定一个大于2的整数n. 第一步,给定一个大于2的整数n. 第二步,令i=2. 第一步,给定一个大于2的整数n. 第二步,令i=2. 第三步,用i除n,得到余数r.第一步,给定一个大于2的整数n. 第二步,令i=2. 第三步,用i除n,得到余数r.第一步,给定一个大于2的整数n. 第二步,令i=2. 第三步,用i除n,得到余数r.(1) 符合运算规则,计算机能操作;(1) 符合运算规则,计算机能操作;(2) 每个步骤都有一个明确的计算任务;(1) 符合运算规则,计算机能操作;(2) 每个步骤都有一个明确的计算任务;(3) 对重复操作步骤作返回处理;(1) 符合运算规则,计算机能操作;(2) 每个步骤都有一个明确的计算任务;(4) 步骤个数尽可能少;(3) 对重复操作步骤作返回处理;(1) 符合运算规则,计算机能操作;(2) 每个步骤都有一个明确的计算任务;(4) 步骤个数尽可能少;(5) 每个步骤的语言描述要准确、简明.(3) 对重复操作步骤作返回处理;<<习案>>:作业一.第一章 算法初步
1.1.1 算法的概念
课时目标 通过分析解决具体问题的过程与步骤,体会算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法.
1.算法的概念
12世纪的
算法
指的是用阿拉伯数字进行算术运算的过程
数学中的
算法
通常是指按照一定规则解决某一类问题的明确和有限的步骤
现代算法
通常可以编成计算机程序,让计算机执行并解决问题
2.算法与计算机
计算机解决任何问题都要依赖于算法,只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.
一、选择题
1.下面四种叙述能称为算法的是(  )
A.在家里一般是妈妈做饭
B.做米饭需要刷锅、淘米、添水、加热这些步骤
C.在野外做饭叫野炊
D.做饭必须要有米
答案 B
解析 算法是解决一类问题的程序或步骤,A、C、D均不符合.
2.下列对算法的理解不正确的是(  )
A.算法有一个共同特点就是对一类问题都有效(而不是个别问题)
B.算法要求是一步步执行,每一步都能得到唯一的结果
C.算法一般是机械的,有时要进行大量重复计算,它的优点是一种通法
D.任何问题都可以用算法来解决
答案 D
3.下列关于算法的描述正确的是(  )
A.算法与求解一个问题的方法相同
B.算法只能解决一个问题,不能重复使用
C.算法过程要一步一步执行,每步执行的操作必须确切
D.有的算法执行完后,可能无结果
答案 C
解析 算法与求解一个问题的方法既有区别又有联系,故A不对;算法能重复使用,故B不对;每个算法执行后必须有结果,故D不对;由算法的有序性和确定性可知C正确.
4.计算下列各式中S的值,能设计算法求解的是(  )
①S=+++…+
②S=+++…++…
③S=+++…+ (n≥1且n∈N*)
A.①② B.①③ C.②③ D.①②③
答案 B
解析 因为算法的步骤是有限的,所以②不能设计算法求解.
5.关于一元二次方程x2-5x+6=0的求根问题,下列说法正确的是(  )
A.只能设计一种算法
B.可以设计两种算法
C.不能设计算法
D.不能根据解题过程设计算法
答案 B
解析 算法具有不唯一性,对于一个问题,我们可以设计不同的算法.
6.对于算法:第一步,输入n.
第二步,判断n是否等于2,若n=2,则n满足条件;若n>2,则执行第三步.
第三步,依次从2到(n-1)检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.
第四步,输出n.
满足条件的n是(  )
A.质数 B.奇数 C.偶数 D.约数
答案 A
解析 此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.
二、填空题
7.已知直角三角形两条直角边长分别为a,b.写出求斜边长c的算法如下:
第一步,输入两直角边长a,b的值.
第二步,计算c=的值.
第三步,________________.
将算法补充完整,横线处应填____________.
答案 输出斜边长c的值
8.下面给出了解决问题的算法:
第一步:输入x.
第二步:若x≤1,则y=2x-1,否则y=x2+3.
第三步:输出y.
(1)这个算法解决的问题是________;
(2)当输入的x值为________时,输入值与输出值相等.
答案 (1)求分段函数y=的函数值 (2)1
9.求1×3×5×7×9×11的值的一个算法是:
第一步,求1×3得到结果3;
第二步,将第一步所得结果3乘5,得到结果15;
第三步,____________________;
第四步,再将105乘9得到945;
第五步,再将945乘11,得到10 395,即为最后结果.
答案 将第二步所得的结果15乘7,得结果105
三、解答题
10.已知某梯形的底边长AB=a,CD=b,高为h,写出一个求这个梯形面积S的算法.
解 第一步,输入梯形的底边长a和b,以及高h.
第二步,计算a+b的值.
第三步,计算(a+b)×h的值.
第四步,计算S=的值.
第五步,输出结果S.
11.函数y=,写出给定自变量x,求函数值的算法.
解 算法如下:第一步,输入x.
第二步,若x>0,则令y=-x+1后执行第五步,否则执行第三步.
第三步,若x=0,则令y=0后执行第五步,否则执行第四步.
第四步,令y=x+1;
第五步,输出y的值.
能力提升
12.某铁路部门规定甲、乙两地之间旅客托运行李的费用为:
c=
其中ω(单位:kg)为行李的质量,如何设计计算托运费用c(单位:元)的算法.
解 第一步,输入行李的质量ω.
第二步,如果ω≤50,则令c=0.53×ω,否则执行第三步.
第三步,c=50×0.53+(ω-50)×0.85.
第四步,输出托运费c.
13.从古印度的汉诺塔传说中演变了一个汉诺塔游戏:
(1)有三根杆子A,B,C,B杆上有三个碟子(大小不等,自上到下,由小到大),如图.
(2)每次移动一个碟子,小的只能叠在大的上面.
(3)把所有碟子从A杆移到C杆上.
试设计一个算法,完成上述游戏.
解 第一步,将A杆最上面碟子移到C杆.
第二步,将A杆最上面碟子移到B杆.
第三步,将C杆上的碟子移到B杆.
第四步,将A杆上的碟子移到C杆.
第五步,将B杆最上面碟子移到B杆.
第六步,将B杆上的碟子移到C杆.
第七步,将A杆上的碟子移到C杆.
1.算法的特点
(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
(2)确定性:算法中的每一步应该是确定的并且能有效地执行且能得到确定的结果,而不应当是模棱两可的.
(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.
(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.
(5)普遍性:很多具体的问题,都可以设计合理的算法去解决.
2.算法与数学问题解法的区别与联系
(1)联系
算法与解法是一般与特殊的关系,也是抽象与具体的关系.
(2)区别
算法是解决某一类问题所需要的程序和步骤的统称,也可理解为数学中的“通法通解”;而解法是解决某一个具体问题的过程和步骤,是具体的解题过程.