人教版高中数学必修三教学资料,补习资料:2.1.2系统抽样(2份)

文档属性

名称 人教版高中数学必修三教学资料,补习资料:2.1.2系统抽样(2份)
格式 zip
文件大小 3.7MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-08-28 15:06:57

文档简介

课件19张PPT。2.1.2系统抽样
教学目标:
1、知识与技能:
(1)正确理解系统抽样的概念;
(2)掌握系统抽样的一般步骤;
(3)正确理解系统抽样与简单随机抽样的关系;
2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法.
3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系.
4、重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题.
知识探究(一):系统抽样的基本思想
思考
1. 某中学高一年级有12个班,每班50人,为了了解高一年级学生对老师教学的意见,教务处打算从年级600名学生中抽取60名进行问卷调查,那么年级每个同学被抽到的概率是多少?
2. 你能用简单随机抽样对上述问题进行抽样吗?具体如何操作?
3. 如果从600件产品中抽取60件进行质量检查,按照上述思路抽样应如何操作?
第一步,将这600件产品编号为1,2,3,…,600.
第二步,将总体平均分成60部分,每一部分含10个个体.
第三步,在第1部分中用简单随机抽样抽取一个号码(如8号).
第四步,从该号码起,每隔10个号码取一个号码,就得到一个容量为60的样本.(如8,18,28,…,598)
系统抽样的定义:
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.
由系统抽样的定义可知系统抽样有以下特征:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=[ ].
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.
思考.下列抽样中不是系统抽样的是 ( C )
A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
知识探究(二):系统抽样的一般步骤
思考1:用系统抽样从总体中抽取样本时,首先要做的工作是什么?
将总体中的所有个体编号.
思考2:如果用系统抽样从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,对此应如何处理?
先从总体中随机剔除5个个体,再均衡分成60部分.
思考3:用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,要平均分成多少段,每段各有多少个号码?
思考4:如果N不能被n整除怎么办?
思考5:将含有N个个体的总体平均分成n段,每段的号码个数称为分段间隔,那么分段间隔k的值如何确定?
总体中的个体数N除以样本容量n所得的商.
思考6:用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?
用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k.
思考7:一般地,用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,其操作步骤如何?
第一步,将总体的N个个体编号.
第二步,确定分段间隔k,对编号进行分段.
第三步,在第1段用简单随机抽样确定起始个体编号l.
第四步,按照一定的规则抽取样本.
思考8:系统抽样适合在哪种情况下使用?与简单随机抽样比较,哪种抽样方法更使样本具有代表性?
总体中个体数比较多;系统抽样更使样本具有代表性.
思考9:在数字化时代,各种各样的统计数字和图表充斥着媒体,由于数字给人的印象直观、具体,所以让数据说话是许多广告的常用手法.下列广告中的数据可靠吗?
“……瘦体减肥灵真的灵,其减肥的有效率为75%.”
“现代研究证明,99%以上的人皮肤感染有螨虫…….”
“……美丽润肤膏,含有多种中药成分,可以彻底清除脸部皱纹,只需10天,就能让你的肌肤得到改善.”
例题精析
例1、从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是
A.5,10,15,20,25 B、3,13,23,33,43
C.1,2,3,4,5 D、2,4,6,16,32
[分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求,故选B。
2-1-2系统抽样
一、选择题
1.某校高三年级有12个班,每个班随机的按1~50号排学号,为了了解某项情况,要求每班学号为20的同学去开座谈会,这里运用的是(  )
A.抽签法       B.随机数表法
C.系统抽样法 D.以上都不是
[答案] C
2.下列抽样中不是系统抽样的是(  )
A.从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i0,以后i0+5,i0+10(超过15则从1再数起)号入样
B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验
C.搞某一市场调查,规定在某一路段随机抽一个人进行询问,直到调查到事先规定调查人数为止
D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
[答案] C
[解析] 抽样方法的实质是:抽样过程中,每个个体被抽取的机会相等,并且抽样前对总体的构成必须心中有数,比如起码知道总体中个体有多少.本题考查系统抽样的有关概念,系统抽样适用于个体较多但均衡的总体,判断是否为系统抽样,应先看是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体等可能入样,再看是否将总体分成几个均衡的部分,每个部分中进行简单随机抽样.而C中因为事先不知道总体,抽样方法不能保证每个个体按事先规定的可能性入样.故C不是系统抽样.
3.下列抽样试验中,最适宜用系统抽样法的是(  )
A.某市的4个区共有2 000名学生,这4个区的学生人数之比为3:2:8:2,从中抽取200人入样
B.从某厂生产的2 000个电子元件中随机抽取5个入样
C.从某厂生产的2 000个电子元件中随机抽取200个入样
D.从某厂生产的20个电子元件中随机抽取5个入样[来源:学*科*网]
[答案] C
4.为了了解参加某次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为(  )
A.2          B.3
C.4 D.5
[答案] A
[解析] 因为1252=50×25+2,所以应随机剔除2个个体,故选A.
5.从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的可能性(  )
A.不全相等 B.均不相等
C.都相等,且为 D.都相等,且为
[答案] C
6.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为(  )
A.24    B.25   
C.26    D.28
[答案] B
[解析] 5008除以200的整体数商为25,∴选B.
7.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为(  )
A.7         B.9
C.10 D.15
[答案] C
[解析] 采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即l=30,第k组的号码为(k-1)30+9,令451≤(k-1)30+9≤750,而k∈z,解得16≤k≤25,则满足16≤k≤25的整数k有10个,故答案应选C.
8.总体容量为520,若采用系统抽样法,当抽样间隔为下列哪个值时,不需要剔除个体(  )
A.6     B.7    
C.8     D.9
[答案] C
9.用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从1到160编号.按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是(  )
A.7 B.5
C.4 D.3
[答案] B
[解析] 用系统抽样知,每段中有8人,第16段应为从121到128这8个号码,125是其中的第5个号码,所以第一段中被确定的号码是5.
10.系统抽样又称为等距抽样,从m个个体中抽取n个个体作为样本(m>n),先确定抽样间隔,即抽样距k=的整数部分,从第一段1,2,…,k个号码中随机地抽取一个入样号码i0,则i0,i0+k,…,i0+(n-1)k号码入样构成样本,所以每个个体入样的可能性(  )
A.与i0有关 B.与编号有关
C.不一定相等 D.相等
[答案] D
二、填空题[来源:学|科|网]
11.从高三(八)班42名学生中,抽取7名学生了解本次考试数学成绩状况,已知本班学生学号是1~42号,现在该班数学老师已经确定抽取6号,那么,用系统抽样法确定其余学生号码为________.[来源:学_科_网]
[答案] 12,18,24,30,36,42
12.某学校有学生4 022人.为调查学生对2012年伦敦奥运会的了解状况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是________.
[答案] 134
[解析] 由于不是整数,所以应从4 022名学生中用简单随机抽样剔除2名,则分段间隔是=134.
13.某单位有技术工人36人,技术员24人,行政人员12人,现需从中抽取一个容量为n(4[答案] 6
[解析] 总体容量为72,由题意可知n能被72整除,n+1能被70整除,因为,414.一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为l+k或l+k-10(l+k≥10),则当l=6时,所抽取的10个号码依次是________.
[答案] 6,17,28,39,40,51,62,73,84,95
[解析] 在第0段随机抽取的号码为6,则由题意知,在第1段抽取的号码应是17,在第2段抽取的号码应是28,依次类推,故正确答案为6,17,28,39,40,51,62,73,84,95.
三、解答题
15.某集团有员工1 019人,其中获得过国家级表彰的有29人,其他人员990人.该集团拟组织一次出国学习,参加人员确定为:获得过国家级表彰的人员5人,其他人员30人.如何确定人选?
[解析] 获得过国家级表彰的人员选5人,适宜使用抽签法;其他人员选30人,适用使用系统抽样法.
(1)确定获得过国家级表彰的人员人选:
①用随机方式给29人编号,号码为1,2,…,29;
②将这29个号码分别写在一个小纸条上,揉成小球,制成号签;
③将得到的号签放入一个不透明的袋子中,搅拌均匀;
④从袋子中逐个抽取5个号签,并记录上面的号码;[来源:学科网]
⑤从总体中将与抽取的号签的号码相一致的个体取出,人选就确定了.
(2)确定其他人员人选:
第一步:将990人其他人员重新编号(分别为1,2,…,990),并分成30段,每段33人;
第二步,在第一段1,2,…,33这33个编号中用简单随机抽样法抽出一个(如3)作为起始号码;
第三步,将编号为3,36,69,…,960的个体抽出,人选就确定了.
(1),(2)确定的人选合在一起就是最终确定的人选.
16.从某厂生产的802辆轿车中抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.
[分析] 因为802不能被80整除,为了保证“等距”分段,应先剔除2个个体,由于总体及样本中的个体数较多,且无明显差异,因此采用系统抽样的方法.
[解析] 第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);
第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k==10个个体;
第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;
第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.
规律总结:系统抽样的一般步骤:
(1)采用随机抽样的方法将总体中的N个个体编号;
(2)整个的编号分段(即分成几个部分),要确定分段的间隔k;
(3)在第一段用简单随机抽样确定起始个体的编号l(l∈N,l≤k);
(4)按照一定的规则抽取样本,通常是将起始编号l加上间隔k得到第2个个体编号l+k,再加上k得到第3个个体编号l+2k,这样继续下去,直到获取整个样本.
17.一个总体中的1000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.
(1)当x=24时,写出所抽取样本的10个号码;
(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.
[解析] (1)当x=24时,按规则可知所抽取样本的10个号码依次为:24,157,290,323,456,589,622,755,888,921.
(2)当k=0,1,2,…,9时,33k的值依次为0,33,66,99,132,165,198,231,264,297.
又抽取样本的10个号码中有一个的后两位数是87,从而x可以为87,54,21,88,55,22,89,56,23,90.
∴x的取值范围是{21,22,23,54,55,56,87,88,89,90}.
18.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:
本村人口:1 200人,户数300,每户平均人口数4人;
应抽户数:30户;
抽样间隔:=40;
确定随机数字:取一张人民币,编码的后两位数为12;[来源:学_科_网]
确定第一样本户:编码的后两位数为12的户为第一样本户;
确定第二样本户:12+40=52,52号为第二样本户;
……
(1)该村委采用了何种抽样方法?
(2)抽样过程中存在哪些问题,并修改.
(3)何处是用简单随机抽样.
[解析] (1)系统抽样.
(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个);确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….
(3)确定随机数字用的是简单随机抽样,取一张人民币,编码的后两位数为02.
2. 1.2系统抽样

【教学目标】:
1. 正确理解系统抽样的概念.
2. 掌握系统抽样的一般步骤.
【教学重难点】:
教学重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题.
教学难点:灵活应用系统抽样的方法解决统计问题.
【教学过程】:
复习回顾:
随机抽样有什么优缺点?
答:优点是简单易行;缺点是当样本容量较大时工作量大且不易实现“搅拌均匀”.
情境导入:
某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?
新知探究:
一、系统抽样的定义:
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干
部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样
的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此, 系统抽样又称等距抽样,这时间隔一般为k=[].
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,此编号
基础上加上分段间隔的整倍数即为抽样编号.
练一练:
(1)你能举几个系统抽样的例子吗?
(2)下列抽样中不是系统抽样的是( )
A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,
随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分
钟抽一件产品检验
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的
调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下
来座谈
解析:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。
二、系统抽样的一般步骤:
(1)采用随机抽样的方法将总体中的N个个编号。
(2)将整体按编号进行分段,确定分段间隔k,k=[].
(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。
(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体
编号L+k,再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本。
【说明】(1)从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分
块解决,从而把复杂问题简单化,体现了数学转化思想。
(2)如果遇到不是整数的情况,可以先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本容量整除。
【精讲精练】:
例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学
习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
解析:按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1个编号。
解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成
59组,每组5人,第一组是编号为1~5的5名学生,第2组是编号为6~10的5名学生, 依次下去,59组是编号为291~295的5名学生。采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,293。
点评:注意分清分段间隔及分段数.
变式训练1、为了了解某大学一年级新生英语学习的情况,拟从503名大学生中抽取50名作为样本,请用系统抽样地方法进行抽取,并写出过程。
[分析]总体个数503不能被50整除,所以应首先从503名学生中随机的剔除3人,再按照系统抽样的方法进行抽样。
解:略
【反馈测评】:
(1)设某校共有118名教师,为了支援西部的教育事业,现要从中随机的抽出16名教师组成暑期西部讲师团,请用系统抽样法选出讲师团成员。
(2)有人说,我们可以借用居民身份证号码(18位)来进行中央电视台春节联欢晚会的收视率调查;在1~999中抽取一个随机数,比如这个数是632,那么身份证后三位是632的观众就是我要调查的对象。请问这样所获得的样本有代表性吗?为什么?
解析:(1)118不能被16整除,余6,所以先从118名教师中随机的剔除6个人,再按系统抽样的方法进行抽样。
(2)身份证倒数第二位表示性别,后2位是632的观众全是男性,所以没有代表性。
【板书设计】:

【作业布置】:
优化丛书 体验成功2.1.2
2.1.2系统抽样

课前预习学案
一、预习目标
预习系统抽样的概念,初步了解系统抽样的一般步骤.
预习内容
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体 ,然后按照 ,从每一部分抽取 ,得到所需要的样本,这种抽样的方法叫做 .
提出疑惑
1、当总体有什么特征时适合用系统抽样?
2、系统抽样的一般步骤是什么?
课内探究学案
学习目标
1. 正确理解系统抽样的概念.
2. 掌握系统抽样的一般步骤.
学习重难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问
题,灵活应用系统抽样的方法解决统计问题.
学习过程
(一)合作探究
探究一:系统抽样的定义:

练一练:下列抽样中不是系统抽样的是( )
A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,
随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分
钟抽一件产品检验
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的
调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下
来座谈
探究二:系统抽样的特点:
(1)当 时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此, 系统抽样又称等距抽样,这时间隔一般为k= .
(3)预先制定的规则指的是:在第1段内采用 确定一个 , 在
此编号基础上加上分段间隔的整倍数即为抽样编号.
探究三:系统抽样的一般步骤:
1.
2.
3.
4.
思考:如果遇到不是整数的情况时怎么办?

(二)精讲点拨:
例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学
习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。



变式训练1、为了了解某大学一年级新生英语学习的情况,拟从503名大学生中抽取50名作为样本,请用系统抽样地方法进行抽取,并写出过程。




(三)反思总结:






(四)当堂检测:
(1)设某校共有118名教师,为了支援西部的教育事业,现要从中随机的抽出16名教师组成暑期西部讲师团,请用系统抽样法选出讲师团成员。
(2)有人说,我们可以借用居民身份证号码(18位)来进行中央电视台春节联欢晚会的收视率调查;在1~999中抽取一个随机数,比如这个数是632,那么身份证后三位是632的观众就是我要调查的对象。请问这样所获得的样本有代表性吗?为什么?

课后练习与提高
一、选择题
1、为了了解1200名学生对学校教改实验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段间隔为( )
A.40 B. 30 C.20 D.12
2、系统抽样适用的总体应是( )
A.容量较少的总体 B.总体容量较多
C.个体数较多但均衡的总体 D.任何总体
3.有40件产品,编号从1到40,先从中抽取4件检验,用系统抽样方法确定所抽的编号为( )
A.5,10,15,20 B.2,12,22,32
C.2,14,26,38 D.5,8,31,36
二、填空题
4、 某影片首映的首场,请座号是第一个入场的观众座号的观众留下做观感调查,这里运用了 抽样.
在1000个有机会中奖的号码(编号为000~999)中,在公证部门监督下按照随机抽
取的方法确定后两位为88的号码为中奖号码,这是运用 抽样方法来确定中奖号码的,依次写出这10个中奖号码:
三、解答题
6、体育彩票000001~100000编号中,凡彩票号码后三位是345的中一等奖,采用的是系统抽样方法吗?为什么?