2. 2.2 用样本的数字特征估计总体的数字特征
〖教学目标〗
1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差
2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释;
3. 会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。
〖教学重难点〗
教学重点 用样本平均数和标准差估计总体的平均数与标准差。
教学难点 能应用相关知识解决简单的实际问题。
〖教学过程〗
一、复习回顾
作频率分布直方图分几个步骤?各步骤需要注意哪些问题?
二、创设情境
在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕
甲运动员﹕7,8,6,8,6,5,8,10,7,4;
乙运动员﹕9,5,7,8,7,6,8,6,7,7.
观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?上节课我们学习了用图表的方法来研究,为了从整体上更好地把握总体的规律,我们这节课要通过样本的数据对总体的数字特。
三、 新知探究
众数、中位数、平均数
众数—一组数中出现次数最多的数;在频率分布直方图中,我们取最高的那个小长方形横坐标的中点。
中位数——当一组数有奇数个时等于中间的数,当有偶数个时等于中间两数的平均数;在频率分布直方图中,是使图形左右两边面积相等的线所在的横坐标。
平均数——将所有数相加再除以这组数的个数;在频率分布直方图中,等于每个小长方形的面积乘以其底边中点的横坐标的和。
思考探究:
分别利用原始数据和频率分布直方图求出众数、中位数、平均数,观察所得的数据,你发现了什么
问题?为什么会这样呢?
你能说说这几个数据在描述样本信息时有什么特点吗?由此你有什么样的体会?
答:(1)从频率分布直方图得到的众数和中位数与从数据中得到的不一样,因为频率分布直方图损失了一部分样本信息,所以不如原始数据准确。
(2)众数和中位数不受极端值的影响,平均数反应样本总体的信息,容易受极端值的影响。
练一练:
假如你是一名交通部门的工作人员,你打算向市长报告国家对本市26个公路项目投资的平均资金数额,其中一条新公路的建设投资为2000万元人民币,另外25个项目的投资是20~100万元。中位数是25万元,平均数是100万元,众数是20万元。你会选择哪一种数字特征 来表示国家对每一个项目投资的平均金额?
解析:平均数。
标准差、方差
在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕
甲运动员﹕7,8,6,8,6,5,8,10,7,4;
乙运动员﹕9,5,7,8,7,6,8,6,7,7.
观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?
我们知道,。
两个人射击的平均成绩是一样的。那么,是否两个人就没有水平差距呢?(观察图2.2-7)直观上看,还是有差异的。很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据。
标准差
标准差是样本数据到平均数的一种平均距离,一般用s表示。
思考探究:
1、标准差的大小和数据的离散程度有什么关系?
2、标准差的取值范围是什么?标准差为0的样本数据有什么特点?
答:(1)显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小。
(2)从标准差的定义和计算公式都可以得出:。当时,意味着所有的样本数据
都等于样本平均数。
方差
在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差。
四、例题精析
例1:农场种植的甲乙两种水稻,在面积相等的两块稻田连续6年的年平均产量如下:
甲:900,920,900,850,910,920
乙:890,960,950,850,860,890
那种水稻的产量比较稳定?
[分析]采用求标准差的方法
解:
所以甲水稻的产量比较稳定。
点评:在平均值相等的情况下,比较方差或标准差。
变式训练:在某项体育比赛中,七位裁判为一选手打出的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为
(A)92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2.8
【答案】B
【解析】由题意知,所剩数据为90,90,93,94,93,所以其平均值为
90+=92;方差为2.8,故选B。
例2、例1.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为
由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在
的人数是 .
(2)这20名工人中一天生产该产品数量的中位数 .
(3)这20名工人中一天生产该产品数量的平均数 .
点评:在直方图中估计中位数、平均数。
变式训练:
某医院急诊中心关于其病人等待急诊的时间记录如下:
等待时间(分钟)
人数
4
8
5
2
1
用上述分组资料计算得病人平均等待时间的估计值= ,病人等待时间的标准差的估计值=
五、反馈测评
1. 在一次知识竞赛中,抽取20名选手,成绩分布如下:
成绩
6
7
8
9
10
人数分布
1
2
4
6
7
则选手的平均成绩是 ( )
A.4 B.4.4 C.8 D.8.8
2.8名新生儿的身长(cm)分别为50,51,52,55,53,54,58,54,则新生儿平均身长的估计为 ,约有一半的新生儿身长大于等于 ,新生儿身长的最可能值是 .
3..样本的平均数为5,方差为7,则3的平均数、方差,标准差分别为
4.某工厂甲,乙两个车间包装同一产品,在自动包装传送带上每隔30min抽一包产品,称其重量是否合格,分别记录抽查数据如下:甲车间:102,101,99,103,98,99,98;乙车间:110,105,90,85,75,115,110.
(1)这样的抽样是何种抽样方法?
(2)估计甲、乙两车间的均值与方差,并说明哪个车间的产品较稳定.
六、课堂小结
1、在频率分布直方图中,如何求出众数、中位数、平均数?
2、标准差的公式;标准差的大小和数据的离散程度有什么关系?
〖板书设计〗
〖书面作业〗
课本 6 7
2.2.2 用样本的数字特征估计总体的数字特征
课前预习学案
一、预习目标:
通过预习,初步理解众数、中位数、平均数、标准差、方差的概念。
二、预习内容:
1、知识回顾:
作频率分布直方图分几个步骤?各步骤需要注意哪些问题?
2、众数、中位数、平均数的概念
众 数:____________________________________________________________________
中位数:___________________________________________________________________
平均数:____________________________________________________________________
3.众数、中位数、平均数与频率分布直方图的关系:
众数在样本数据的频率分布直方图中,就是______________________________________
中位数左边和右边的直方图的________应该相等,由此可估计中位数的值。
平均数是直方图的___________.
4.标准差、方差
标准差 s=_________________________________________________________________
方 差s2=_________________________________________________________________
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标:
1. 能说出样本数据标准差的意义和作用,会计算数据的标准差
2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释;
3. 会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。
二、学习内容
1.众数、中位数、平均数
思考1:分别利用原始数据和频率分布直方图求出众数、中位数、平均数,观察所得的数据,你发现了什么问题?为什么会这样呢?
思考2: 你能说说这几个数据在描述样本信息时有什么特点吗?由此你有什么样的体会?
练一练:
假如你是一名交通部门的工作人员,你打算向市长报告国家对本市26个公路项目投资的平均资金数额,其中一条新公路的建设投资为2000万元人民币,另外25个项目的投资是20~100万元。中位数是25万元,平均数是100万元,众数是20万元。你会选择哪一种数字特征来表示国家对每一个项目投资的平均金额?
2. 标准差、方差
在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕
甲运动员﹕7,8,6,8,6,5,8,10,7,4;
乙运动员﹕9,5,7,8,7,6,8,6,7,7.
观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?
思考1:标准差的大小和数据的离散程度有什么关系?
思考2:标准差的取值范围是什么?标准差为0的样本数据有什么特点?
3、〖典型例题〗
例1.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为
由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在
的人数是 .
(2)这20名工人中一天生产该产品数量的中位数 .
(3)这20名工人中一天生产该产品数量的平均数 .
例2:农场种植的甲乙两种水稻,在面积相等的两块稻田连续6年的年平均产量如下:
甲:900,920,900,850,910,920
乙:890,960,950,850,860,890
那种水稻的产量比较稳定?
三、反思总结
1、 在频率分布直方图中,如何求出众数、中位数、平均数?
2、标准差的公式;标准差的大小和数据的离散程度有什么关系?
四、当堂检测
在一次知识竞赛中,抽取20名选手,成绩分布如下:
成绩
6
7
8
9
10
人数分布
1
2
4
6
7
则选手的平均成绩是 ( )
A.4 B.4.4 C.8 D.8.8
2.8名新生儿的身长(cm)分别为50,51,52,55,53,54,58,54,则新生儿平均身长的估计为 ,约有一半的新生儿身长大于等于 ,新生儿身长的最可能值是 .
3.某医院急诊中心关于其病人等待急诊的时间记录如下:
等待时间(分钟)
人数
4
8
5
2
1
用上述分组资料计算得病人平均等待时间的估计值= ,病人等待时间的标准差的估计值=
4.样本的平均数为5,方差为7,则3的平均数、方差,标准差分别为
5.某工厂甲,乙两个车间包装同一产品,在自动包装传送带上每隔30min抽一包产品,称其重量是否合格,分别记录抽查数据如下:甲车间:102,101,99,103,98,99,98;乙车间:110,105,90,85,75,115,110.
(1)这样的抽样是何种抽样方法?
(2)估计甲、乙两车间的均值与方差,并说明哪个车间的产品较稳定.
课后练习与提高
1.某人5次上班途中所花的时间(单位:分钟)分别为已知这组数据的平均数为10,方差为2,则的值为( )
A.1 B.2 C.3 D.4
解:由平均数公式为10,得,则,又由于方差为2,则得
所以有,故选D.
2.某房间中10个人的平均身高为1.74米,身高为1.85米的第11个人,进入房间后,这11个人的平均身高是多少?
解:原来的10个人的身高之和为17.4米,所以,这11个人的平均身高为=1.75.即这11个人的平均身高为1075米
[例4]若有一个企业,70%的人年收入1万,25%的人年收入3万,5%的人年收入11万,求这个企业的年平均收入及年收入的中位数和众数
解:年平均收入为1(万);中位数和众数均为1万
3.下面是某快餐店所有工作人员的收入表:
老板
大厨
二厨
采购员
杂工
服务生
会计
3000元
450元
350元
400元
320元
320元
410元
(1)计算所有人员的月平均收入;
(2)这个平均收入能反映打工人员的月收入的一般水平吗?为什么?
(3)去掉老板的收入后,再计算平均收入,这能代表打工人员的月收入的水平吗?
(4)根据以上计算,以统计的观点对(3)的结果作出分析
课件28张PPT。2-2-2用样本的数字特征估计总体的数字特
一、选择题
1.甲、乙两中学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是( )
A.因为他们平均分相等,所以学习水平一样
B.成绩平均分虽然一样,方差较大的,说明潜力大,学习态度端正
C.表面上看这两个学生平均成绩一样,但方差小的成绩稳定
D.平均分相等,方差不等,说明学习不一样,方差较小的同学,学习成绩不稳定,忽高忽低
[答案] C
2.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )
A.甲地:总体均值为3,中位数为4
B.乙地:总体均值为1,总体方差大于0
C.丙地:中位数为2,众数为3
D.丁地:总体均值为2,总体方差为3
[答案] D
3.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有( )
A.a>b>c B.b>c>a
C.c>a>b D.c>b>a
[答案] D
4.甲、乙两台机床同时生产一种零件,现要检验它们的运行情况,统计10天中两台机床每天出次品数分别为甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.则从平均数考试,甲、乙两台机器出次品数较少的为( )
A.甲 B.乙
C.相同 D.不能比较
[答案] B
[解析] 甲=(0+1+0+2+…+4)=1.5,
乙=(2+3+…+1)=1.2.
乙<甲.
5.已知一个样本中含有5个数据3,5,7,4,6,则样本方差为( )
A.1 B.2
C.3 D.4
[答案] B
[解析] ==5,
则方差s2=[(3-5)2+(5-5)2+(7-5)2+(4-5)2+(6-5)2]=2.
6.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是( )
A.63 B.64
C.65 D.66
[答案] A
[解析] 甲、乙两人在这几场比赛中得分的中位数分别是36和27,则中位数之和是36+27=63.
7.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:
甲的成绩
环数
7
8
9[来源:Z,xx,k.Com]
10
频数
5
5
5
5
乙的成绩
环数
7[来源:学*科*网Z*X*X*K]
8
9[来源:学科网]
10
频数
6
4
4
6
丙的成绩
环数
7
8
9
10
频数
4
6
6
4
s1,s2,s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )
A.s3>s1>s2 B.s2>s1>s3
C.s1>s2>s3 D.s2>s3>s1
[答案] B
8.某市在非典期间一手抓防治非典,一手抓经济发展,下表是利群超市5月份一周的利润情况记录:
日期
12日
13日
14日
15日
16日
17日
18日
当日利润(万元)
0.20
0.17
0.23
0.21
0.23
0.18
0.25
根据上表你估计利群超市今年五月份的总利润是( )
A.6.51万元 B.6.4万元
C.1.47万元 D.5.88万元
[答案] A
[解析] 从表中一周的利润可得一天的平均利润为
=
=0.21.又五月份共有31天,
∴五月份的总利润约是0.21×31=6.51(万元).
9.甲、乙两个数学兴趣小组各有5名同学,在一次数学测试中,成绩统计用茎叶图表示,如图所示.若甲、乙小组的平均成绩分别是甲、乙,则下列结论正确的是( )
A.甲>乙,甲比乙成绩稳定
B.甲>乙,乙比甲成绩稳定
C.甲<乙,甲比乙成绩稳定
D.甲<乙,乙比甲成绩稳定
[答案] A
[解析] 根据茎叶图可知,甲组5名同学的成绩分别是88,89,90,91,92,乙组5名同学的成绩分别是83,84,88,89,91,可得甲=90,乙=87,故有甲>乙;s=2,s=9.2,故有s>s,所以甲比乙的成绩稳定,所以选A.
10.如图是一次考试结果的频数分布直方图,根据该图可估计,这次考试的平均分数为( )
A.46 B.36
C.56 D.60
[答案] A
[解析] 根据频数分布直方图,可估计有4人成绩在[0,20)之间,其考试分数之和为4×10=40;有8人成绩在[20,40)之间,其考试分数之和为8×30=240;有10人成绩在[40,60)之间,其考试分数之和为10×50=500;有6人成绩在[60,80)之间,其考试分数之和为6×70=420;有2人成绩在[80,100)之间,其考试分数之和为2×90=180,由此可知,考生总人数为4+8+10+6+2=30,考虑总成绩为40+240+500+420+180=1 380,平均数==46.
二、填空题
11.已知样本101,100,99,a,b的平均数为100,方差为2,这个样本中的数据a与b的取值为________.
[答案] 102,98或98,102
[解析] 由题设知,
∴或.
12由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)
[答案] 1,1,3,3
[解析] 不妨设x1≤x2≤x3≤x4,
得:x2+x3=4,x1+x2+x3+x4=8?x1+x4=4
s2=1?(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2=4?
①如果有一个数为0或4;则其余数为2,不合题意; ②只能取|x1-2|=1;得:这组数据为1,1,3,3.
13.某班50名学生右眼视力的检查结果如下表所示:
视力
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.0
1.2
1.5
人数
1
1
3
4
3
4
4
6
8
10
6
则该班学生右眼视力的众数为________,中位数为________.
[答案] 1.2 0.8
14.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.
[答案] 5
[解析] 由茎叶图可知,该篮球运动员6场比赛的得分分别是14,17,18,18,20,21,得分的平均数==18,根据方差公式得s2=[(14-18)2+(17-18)2+(18-18)2+(18-18)2+(20-18)2+(21-18)2]=5.
三、解答题
15.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
甲
60
80
70
90
70
乙
80
60
70
80
75
(1)甲、乙的平均成绩谁最好?
(2)谁的各门功课发展较平衡?
[解析] (1)甲=(60+80+70+90+70)=74,
乙=(80+60+70+80+75)=73,
故甲的平均成绩较好.
(2)s=[(60-74)2+(80-74)2+(70-74)2+(90-74)2+(70-74)2]=104,
s=[(80-73)2+(60-73)2+(70-73)2+(80-73)2+(75-73)2]=56,
由s>s,知乙的各门功课发展较平衡.
16.某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:
品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454
品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430
(1)完成所附的茎叶图;
(2)用茎叶图处理现有的数据,有什么优点?
(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.
[解析] (1)
(2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;此时茎叶图不仅清晰明了的展示了数据的分布情况,便于比较,没有任何信息损失,而且还可以随时记录新的数据.
(3)通过观察茎叶图可以看出:①品种A的亩产平均数(或均值)比品种B高;②品种A的亩产标准差(或方差)比品种B大,故品种A的亩产稳定性较差.
17.某学校高一(1)班和高一(2)班各有49名学生,两班在一次数学测验中的成绩统计如下:
班级
平均分
众数
中位数
标准差
(1)班
79
70
87
19.8
(2)班
79
70
79[来源:Zxxk.Com]
5.2
(1)请你对下面的一段话给予简要分析:
(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均分为79分,得70分的人最多,我得了85分,在班里算上上游了!”
(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出建议.
[分析] (1)根据平均数、中位数、众数所反映的情况来分析;(2)结合方差的意义来提出建议.
[解析] (1)由于(1)班49名学生数学测验成绩的中位数是87,则85分排在全班第25名之后,所以从位次上看,不能说85分是上游,成绩应该属于中游.
但也不能以位次来判断学习的好坏,小刚得了85分,说明他对这段的学习内容掌握得较好,从掌握学习的内容上讲,也可以说属于上游.
(2)①班成绩的中位数是87分,说明高于87分(含87)的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难的学生的帮助.
②班的中位数和平均数都是79分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的也很少,建议采取措施提高优秀率.
18.从某校参加数学竞赛的试卷中抽取一个样本,考查竞赛的成绩分布,将样本分成6组,得到频率分布直方图如图,从左到右各小组的小长方形的高的比为1:1:3:6:4:2,最右边的一组的频数是8.请结合直方图的信息,解答下列问题:
(1)样本容量是多少?
(2)成绩落在哪个范围的人数最多?并求出该小组的频数和频率.
(3)估计这次数学竞赛成绩的众数、中位数和平均数.
[解析] (1)从左到右各小组的频率分别为,,,,,
样本容量为=68.
(2)成绩落在70~80之间的人数最多;频率为;频数为68×=24.
(3)众数的估计值是75,中位数的估计值是
70+×10[来源:学&科&网]
=≈75.83.
平均数的估计值是
×45+×55+×65+×75+×85+×95=75.
2.2用样本估计总体(三)
问题提出
1. 对一个未知总体,我们常用样本的频率分布估计总体的分布,其中表示样本数据的频率分布的基本方法有哪些?
频率分布直方图、频率分布表、频率分布折线图、茎叶图
2. 美国NBA在2006——2007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:
甲运动员得分:12,15,20,25,31,30, 36,36,37,39,44,49.
乙运动员得分:8,13,14,16,23,26, 28,38,39,51,31,39.
如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征.
知识探究(一):众数、中位数和平均数
思考1:以上两组样本数据如何求它们的众数、中位数和平均数?
思考2:在城市居民月均用水量样本数据的频率分布直方图中,你认为众数应在哪个小矩形内?由此估计总体的众数是什么?
思考3:中位数左右两侧的直方图的面积应有什么关系?
思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么?
0.5-0.04-0.08-0.15-0.22=0.01,0.5×0.01÷0.25=0.02,中位数是2.02.
思考5:平均数是频率分布直方图的“重心”,从直方图估计总体在各组数据内的平均数分别为多少?
0.25,0.75,1.25,1.75,2.25, 2.75,3.25,3.75,4.25.
思考6:将频率分布直方图中每个小矩形的 面积与小矩形底边中点的横坐标之积相加, 就是样本数据的估值平均数. 由此估计总体的平均数是什么?
0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×06+3.75×0.04+4.25×0.02=2.02(t).
平均数是2.02.
思考7:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?
频率分布直方图损失了一些样本数据,得到的是一个估计值,且所得估值与数据分组有关.
注: 在只有样本频率分布直方图的情况下,我们可以按上述方法估计众数、中位数和平均数,并由此估计总体特征.
思考8 (1)一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会成为缺点,你能举例说明吗?
如:样本数据收集有个别差错不影响中位数;大学毕业生凭工资中位数找单位可能收入较低.
(2)样本数据的平均数大于(或小于)中位数说明什么问题?
平均数大于(或小于)中位数,说明样本数据中存在许多较大(或较小)的极端值.
(3)你怎样理解“我们单位的收入水平比别的单位高”这句话的含义?
这句话具有模糊性甚至蒙骗性,其中收入水平是员工工资的某个中心点,它可以是众数、中位数或平均数.
样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息.
平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.
当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.
知识探究(二):标准差
思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下:
甲:7 8 7 9 5 4 9 10 7 4
乙:9 5 7 8 7 6 8 6 7 7
甲、乙两人本次射击的平均成绩分别为多少环?
思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?
甲的成绩比较分散,极差较大,乙的成绩相对集中,比较稳定.
思考3:对于样本数据x1,x2,…,xn,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?
思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s表示.假设样本数据x1,x2,…,xn的平均数为,则标准差的计算公式是:
那么标准差的取值范围是什么?标准差为0的样本数据有何特点?
s≥0,标准差为0的样本数据都相等.
思考5:对于一个容量为2的样本:x1,x2(x1标准差越大离散程度越大,数据较分散;
标准差越小离散程度越小,数据较集中在平均数周围.
知识迁移
计算甲、乙两名运动员的射击成绩的标准差,比较其射击水平的稳定性.
甲:7 8 7 9 5 4 9 10 7 4
乙:9 5 7 8 7 6 8 6 7 7
课堂小结
用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据.
2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.
3. 标准差描述一组数据围绕平均数波动的幅度.在实际应用中,我们常综合样本的多个统计数据,对总体进行估计,为解决问题作出决策.
作业:
《习案》作业二十、作业二十一
2.2用样本估计总体(四)
知识回顾
1.如何根据样本频率分布直方图,分别估计总体的众数、中位数和平均数?
(1)众数:最高矩形下端中点的横坐标.
(2)中位数:直方图面积平分线与横轴交点的横坐标.
(3)平均数:每个小矩形的面积与小矩形底边中点的横坐标的乘积之和.
2. 对于样本数据x1,x2,…,xn,其标准差如何计算?
知识补充
1.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.
2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.
3.对于城市居民月均用水量样本数据,其平均数 ,标准差s=0.868.在这100个数据中,落在区间 =[1.105,2.841]外的有28个;落在区间=[0.237,3.709]外的只有4个;落在区间 =[-0.631,4.577]外的有0个.
一般地,对于一个正态总体,数据落在区间 、 、
内的百分比分别为68.3%、95.4%、99.7%,这个原理在产品质量控制中有着广泛的应用(参考教材P79“阅
读与思考”).
例题分析
例1 画出下列四组样本数据的条形图,说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.
例2 甲、乙两人同时生产内径为25.40mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各随机抽取20件,量得其内径尺寸如下(单位:mm):
甲 :
25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39
乙:
25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 26.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48
从生产零件内径的尺寸看,谁生产的零件质量较高?
甲生产的零件内径更接近内径标准,且稳定程度较高,故甲生产的零件质量较高.
说明:1.生产质量可以从总体的平均数与标准差两个角度来衡量,但甲、乙两个总体的平均数与标准差都是不知道的,我们就用样本的平均数与标准差估计总体的平均数与标准差.
2.问题中25.40mm是内径的标准值,而不是总体的平均数.
例3 以往招生统计显示,某所大学录取的新生高考总分的中位数基本稳定在550分,若某同学今年高考得了520分,他想报考这所大学还需收集哪些信息?
要点:
(1)查往年录取的新生的平均分数.若平均数小于中位数很多,说明最低录取线较低,可以报考;
(2)查往年录取的新生高考总分的标准差.若标准差较大,说明新生的录取分数较分散,最低录取线可能较低,可以考虑报考.
练习
5、(宁夏理11文12).甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表
甲的成绩
环数
7
8
9
10
频数
5
5
5
5
乙的成绩
环数
7
8
9
10
频数
6
4
4
6
丙的成绩
环数
7
8
9
10
频数
4
6
6
4
分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( B )
A. B. C. D.
课堂小结
1.对同一个总体,可以抽取不同的样本,相应的平均数与标准差都会发生改变.如果样本的代表性差,则对总体所作的估计就会产生偏差;如果样本没有代表性,则对总体作出错误估计的可能性就非常大,由此可见抽样方法的重要性.
2.在抽样过程中,抽取的样本是具有随机性的,如从一个包含6个个体的总体中抽取一个容量为3的样本就有20中可能抽样,因此样本的数字特征也有随机性. 用样本的数字特征估计总体的数字特征,是一
种统计思想,没有惟一答案.
3.在实际应用中,调查统计是一个探究性学习过程,需要做一系列工作,我们可以把学到的知识应用到自主研究性课题中去.
课件45张PPT。2.2 用样本估计总体第三课时 作业:
《习案》作业二十
作业二十一课件45张PPT。2.2 用样本估计总体第四课时 1.如何根据样本频率分布直方图,分别估
计总体的众数、中位数和平均数?1.如何根据样本频率分布直方图,分别估
计总体的众数、中位数和平均数?(1)众数:最高矩形下端中点的横坐标.1.如何根据样本频率分布直方图,分别估
计总体的众数、中位数和平均数?(1)众数:最高矩形下端中点的横坐标.(2)中位数:直方图面积平分线与横轴交
点的横坐标.1.如何根据样本频率分布直方图,分别估
计总体的众数、中位数和平均数?(1)众数:最高矩形下端中点的横坐标.(2)中位数:直方图面积平分线与横轴交
点的横坐标.(3)平均数:每个小矩形的面积与小矩形
底边中点的横坐标的乘积之和. 2. 对于样本数据x1,x2,…,xn,其标准
差如何计算?2. 对于样本数据x1,x2,…,xn,其标准
差如何计算?样本数字特征例题分析1.标准差的平方s2称为方差,有时用方差
代替标准差测量样本数据的离散度.方差
与标准差的测量效果是一致的,在实际
应用中一般多采用标准差.1.标准差的平方s2称为方差,有时用方差
代替标准差测量样本数据的离散度.方差
与标准差的测量效果是一致的,在实际
应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很
多,总体的平均数与标准差是未知的,
我们通常用样本的平均数和标准差去估
计总体的平均数与标准差,但要求样本
有较好的代表性.3.对于城市居民月均用水量样本数据,其
平均数 ,标准差s=0.868.
在这100个数据中,
落在区间 =[1.105,2.841]外
的有28个;
落在区间 =[0.237,3.709]
外的只有4个;
落在区间 =[-0.631,4.577]
外的有0个. 一般地,对于一个正态总体,数据
落在区间 、 、
内的百分比分别为68.3%、
95.4%、99.7%,这个原理在产品质量控
制中有着广泛的应用(参考教材P79“阅
读与思考”). 例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (1)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (1)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (1)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (1)O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (2)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (1)O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (2)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (1)O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (2)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (1)O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (2)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (1)O频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 (2)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(4)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(4)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(4)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(4)例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(3)频率1.0
0.8
0.6
0.4
0.21 2 3 4 5 6 7 8 O(4)例2 甲、乙两人同时生产内径为25.40mm的一
种零件,为了对两人的生产质量进行评比,从
他们生产的零件中各随机抽取20件,量得其内
径尺寸如下(单位:mm):甲 :
25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45
25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40
25.42 25.35 25.41 25.39乙:
25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49
26.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31
25.32 25.32 25.32 25.48 从生产零件内径的尺寸看,谁生产的零件
质量较高? 甲生产的零件内径更接近内径标准,且稳
定程度较高,故甲生产的零件质量较高. 甲生产的零件内径更接近内径标准,且稳
定程度较高,故甲生产的零件质量较高. 说明:1.生产质量可以从总体的平均数与标准
差两个角度来衡量,但甲、乙两个总体的平均
数与标准差都是不知道的,我们就用样本的平
均数与标准差估计总体的平均数与标准差.
2.问题中25.40mm是内径的标准值,而不是
总体的平均数.例3 以往招生统计显示,某所大学录取的
新生高考总分的中位数基本稳定在550分,
若某同学今年高考得了520分,他想报考
这所大学还需收集哪些信息?例3 以往招生统计显示,某所大学录取的
新生高考总分的中位数基本稳定在550分,
若某同学今年高考得了520分,他想报考
这所大学还需收集哪些信息?要点:
(1)查往年录取的新生的平均分数.若平均数
小于中位数很多,说明最低录取线较低,可以
报考;
(2)查往年录取的新生高考总分的标准差.若
标准差较大,说明新生的录取分数较分散,最
低录取线可能较低,可以考虑报考.(宁夏理11文12).甲、乙、丙三名射箭运动员
在某次测试中各射箭20次,三人的测试成绩如
下表:s1,s2,s3分别表示甲、
乙、丙三名运动员这次
测试成绩的标准差,则
有( )A. s3>s1>s2
B. s2>s1>s3
C. s1>s2>s3
D. s2>s3>s1(宁夏理11文12).甲、乙、丙三名射箭运动员
在某次测试中各射箭20次,三人的测试成绩如
下表:s1,s2,s3分别表示甲、
乙、丙三名运动员这次
测试成绩的标准差,则
有( )A. s3>s1>s2
B. s2>s1>s3
C. s1>s2>s3
D. s2>s3>s1B1.对同一个总体,可以抽取不同的样本,
相应的平均数与标准差都会发生改变.如
果样本的代表性差,则对总体所作的估
计就会产生偏差;如果样本没有代表性,
则对总体作出错误估计的可能性就非常
大,由此可见抽样方法的重要性.2.在抽样过程中,抽取的样本是具有随机
性的,如从一个包含6个个体的总体中抽
取一个容量为3的样本就有20中可能抽样,
因此样本的数字特征也有随机性. 用样本
的数字特征估计总体的数字特征,是一
种统计思想,没有惟一答案.3.在实际应用中,调查统计是一个探究性
学习过程,需要做一系列工作,我们可以
把学到的知识应用到自主研究性课题中去.2.2.2 用样本的数字特征估计总体的数字特征
课时目标 1.会求样本的众数、中位数、平均数、标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.
1.众数、中位数、平均数
(1)众数的定义:
一组数据中重复出现次数________的数称为这组数的众数.
(2)中位数的定义及求法
把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.
①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.
②当数据个数为偶数时,中位数为排列的最中间的两个数的________.
(3)平均数
①平均数的定义:
如果有n个数x1,x2,…,xn,那么=____________,叫做这n个数的平均数.
②平均数的分类:
总体平均数:________所有个体的平均数叫总体平均数.
样本平均数:________所有个体的平均数叫样本平均数.
2.标准差、方差
(1)标准差的求法:
标准差是样本数据到平均数的一种平均距离,一般用s表示.
s=________________________________________________________________________.
(2)方差的求法:
标准差的平方s2叫做方差.
s2=________________________________________________________________________.
一、选择题
1.下列说法正确的是( )
A.在两组数据中,平均值较大的一组方差较大
B.平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小
C.方差的求法是求出各个数据与平均值的差的平方后再求和
D.在记录两个人射击环数的两组数据中,方差大的表示射击水平高
2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有( )
A.a>b>c B.a>c>b
C.c>a>b D.c>b>a
3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )
A.甲 B.乙
C.甲、乙相同 D.不能确定
4.一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是( )
A.s2 B.s2
C.3s2 D.9s2
5.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )
A.84,4.84 B.84,1.6
C.85,1.6 D.85,0.4
6.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为A和B,样本标准差分别为sA和sB则( )
A.A>B,sA>sB B.A<B,sA>sB
C.A>B,sA题 号
1
2
3
4
5
6
答 案
二、填空题
7.已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.
8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):
甲
10
8
9
9
9
乙
10
10
7
9
9
如果甲、乙两人只能有1人入选,则入选的应为________.
9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,这21个数据的方差为________.
三、解答题
10.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(1)请填写表:
平均数
方差
中位数
命中9环及9环以上的次数
甲
乙
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和中位数相结合看(分析谁的成绩好些);
③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);
④从折线图上两人射击命中环数的走势看(分析谁更有潜力).
能力提升
11.下面是一家快餐店所有工作人员(共7人)一周的工资表:
总经理
大厨
二厨
采购员
杂工
服务员
会计
3 000元
450元
350元
400元
320元
320元
410元
(1)计算所有人员一周的平均工资;
(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?
(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?
12.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:
平均成绩
标准差
第一组
90
6
第二组
80
4
求全班的平均成绩和标准差.
1.平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.
众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.
由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.
2.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.
3.极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.
答案:
2.2.2 用样本的数字特征估计总体的数字特征
知识梳理
1.(1)最多 (2)中间 ①中间位置的 ②平均数 (3)① ②总体中 样本中
2.(1) (2)[(x1-)2+(x2-)2+…+(xn-)2]
作业设计
1.B [A中平均值和方差是数据的两个特征,不存在这种关系;C中求和后还需取平均数;D中方差越大,射击越不平稳,水平越低.]
2.D [由题意a=(16+18+15+11+16+18+18+17+15+13)==15.7,
中位数为16,众数为18,即b=16,c=18,
∴c>b>a.]
3.B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.
∵5.09>3.72,故选B.]
4.D [s=[9x+9x+…+9x-n(3)2]=9·(x+x+…+x-n 2)=9·s2(s为新数据的方差).]
5.C [由题意=(84+84+86+84+87)=85.
s2=[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=(1+1+1+1+4)==1.6.]
6.B [样本A数据均小于或等于10,样本B数据均大于或等于10,故A<B,
又样本B波动范围较小,故sA>sB.]
7.91
解析 由题意得
8.甲
解析 甲=9,=0.4,乙=9,=1.2,故甲的成绩较稳定,选甲.
9.0.19
解析 这21个数的平均数仍为20,从而方差为×[20×0.2+(20-20)2]≈0.19.
10.解 由折线图,知
甲射击10次中靶环数分别为:
9,5,7,8,7,6,8,6,7,7.
将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.
乙射击10次中靶环数分别为:
2,4,6,8,7,7,8,9,9,10.
也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.
(1)甲=×(5+6×2+7×4+8×2+9)=
=7(环),
乙=×(2+4+6+7×2+8×2+9×2+10)=
=7(环),
s=×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]
=×(4+2+0+2+4)
=1.2,
s=×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]
=×(25+9+1+0+2+8+9)
=5.4.
根据以上的分析与计算填表如下:
平均数
方差
中位数
命中9环及9环以上的次数
甲
7
1.2
7
1
乙
7
5.4
7.5
3
(2)①∵平均数相同,
<,
∴甲成绩比乙稳定.
②∵平均数相同,
甲的中位数<乙的中位数,
∴乙的成绩比甲好些.
③∵平均数相同,命中9环及9环以上的次数甲比乙少,
∴乙成绩比甲好些.
④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.
11.解 (1)平均工资即为该组数据的平均数
=×(3 000+450+350+400+320+320+410)
=×5 250=750(元).
(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.
(3)除去总经理的工资后,其他工作人员的平均工资为:′=×(450+350+400+320+320+410)
=×2 250=375(元).
这个平均工资能代表一般工作人员一周的收入水平.
12.解 设第一组20名学生的成绩为xi(i=1,2,…,20),
第二组20名学生的成绩为yi(i=1,2,…,20),
依题意有:=(x1+x2+…+x20)=90,
=(y1+y2+…+y20)=80,故全班平均成绩为:
(x1+x2+…+x20+y1+y2+…+y20)
=(90×20+80×20)=85;
又设第一组学生成绩的标准差为s1,第二组学生成绩的标准差为s2,则s=(x+x+…+x-202),
s=(y+y+…+y-202)
(此处,=90,=80),又设全班40名学生的标准差为s,平均成绩为(=85),故有
s2=(x+x+…+x+y+y+…+y-402)
=(20s+202+20s+202-402)
=(62+42+902+802-2×852)=51.
s=.
所以全班同学的平均成绩为85分,标准差为.