首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
必修1
第二章 基本初等函数(Ⅰ)
2.1 指数函数
2.1.2指数函数及其性质
人教A版高中数学必修一教学资料,补习资料2.1.2 指数函数及其性质 6份
文档属性
名称
人教A版高中数学必修一教学资料,补习资料2.1.2 指数函数及其性质 6份
格式
zip
文件大小
1.2MB
资源类型
教案
版本资源
人教新课标A版
科目
数学
更新时间
2019-08-29 21:51:20
点击下载
文档简介
2.1.2 指数函数及其性质
课标要点
课标要点
学考要求
高考要求
1.指数函数的概念
b
b
2.指数函数的图象
c
c
3.指数函数的性质
c
c
4.利用函数图象解决问题
c
c
知识导图
学法指导
1.明确指数函数的概念,会求指数函数的解析式.
2.借助指数函数的图象来学习函数性质,学会用数形结合的方法解决有关问题.
3.在掌握指数函数的图象与性质的基础上,学会解决与指数函数有关的复合函数问题.
第1课时 指数函数及其性质
知识点一 指数函数的定义
函数y=ax(a>0且a≠1)叫做指数函数,其中x是自变量.
指数函数解析式的3个特征
(1)底数a为大于0且不等于1的常数.
(2)自变量x的位置在指数上,且x的系数是1.
(3)ax的系数是1.
知识点二 指数函数的图象与性质
a>1
0
图象
性
质
定义域
R
值域
(0,+∞)
过定点
过点(0,1),即x=0时,y=1
函数值
的变化
当x>0时,y>1;
当x<0时,0
当x>0时,0
当x<0时,y>1
单调性
是R上的增函数
是R上的减函数
底数a与1的大小关系决定了指数函数图象的“升”与“降”.当a>1时,指数函数的图象是“上升”的;当0
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)y=x2是指数函数.( )
(2)指数函数y=ax中,a可以为负数.( )
(3)指数函数的图象一定在x轴的上方.( )
答案:(1)× (2)× (3)√
2.下列各函数中,是指数函数的是( )
A.y=(-3)x B.y=-3x
C.y=3x-1 D.y=x
解析:根据指数函数的定义y=ax(a>0且a≠1)可知只有D项正确.
答案:D
3.函数f(x)=的定义域为( )
A.R B.(0,+∞)
C.[0,+∞) D.(-∞,0)
解析:要使函数有意义,
则2x-1>0,∴2x>1,∴x>0.
答案:B
4.已知集合A={x|x<3},B={x|2x>4},则A∩B=( )
A.? B.{x|0
C.{x|1
解析:依据函数y=2x是增函数,可得B={x|2x>4}={x|x>2},则A∩B={x|2
答案:D
类型一 指数函数概念的应用
例1 (1)若y=(a2-3a+3)ax是指数函数,则有( )
A.a=1或2 B.a=1
C.a=2 D.a>0且a≠1
(2)指数函数y=f(x)的图象经过点,那么f(4)·f(2)等于________.
【解析】 (1)由指数函数的定义得解得a=2.
(2)设y=f(x)=ax(a>0,a≠1),所以a-2=,所以a=2,
所以f(4)·f(2)=24×22=64.
【答案】 (1)C (2)64
(1)根据指数函数的定义可知,底数a>0且a≠1,ax的系数是1.
(2)先设指数函数为f(x)=ax,借助条件图象过点(-2,)求a,最后求值.
方法归纳
(1)判断一个函数是指数函数的方法
①看形式:只需判定其解析式是否符合y=ax(a>0,且a≠1)这一结构特征.
②明特征:指数函数的解析式具有三个特征,只要有一个特征不具备,则不是指数函数.
(2)已知某函数是指数函数求参数值的基本步骤
跟踪训练1 (1)若函数y=(3-2a)x为指数函数,则实数a的取值范围是________;
(2)下列函数中是指数函数的是________.(填序号)
①y=2·()x ②y=2x-1 ③y=x ④y=xx ⑤y=3- ⑥y=x.
解析:(1)若函数y=(3-2a)x为指数函数,
则解得a<且a≠1.
(2)①中指数式()x的系数不为1,故不是指数函数;②中y=2x-1=·2x,指数式2x的系数不为1,故不是指数函数;④中底数为x,不满足底数是唯一确定的值,故不是指数函数;⑤中指数不是x,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填③.
答案:(1)(-∞,1)∪ (2)③
(1)指数函数系数为1.
(2)底数>0且≠1.
类型二 指数函数的图象问题
例2 (1)如图所示是下列指数函数的图象:
①y=ax ②y=bx
③y=cx ④y=dx
则a,b,c,d与1的大小关系是( )
A.a
C.1
(2)当a>0且a≠1时,函数f(x)=ax-3-2必过定点________.
【解析】 (1)可先分为两类,③④的底数一定大于1,①②的底数一定小于1,然后再由③④比较c,d的大小,由①②比较a,b的大小.当指数函数的底数大于1时,图象上升,且当底数越大,图象向上越靠近y轴;当底数大于0小于1时,图象下降,且当底数越小,图象向下越靠近x轴,故选B.
(2)当a>0且a≠1时,总有f(3)=a3-3-2=-1,所以函数f(x)=ax-3-2必过定点(3,-1).
【答案】 (1)B (2)(3,-1)
(1)先由a>1,0
(2)由y=ax过定点(0,1)来求f(x)过定点.
方法归纳
指数函数的图象随底数变化的规律可归纳为:
(1)无论指数函数的底数a如何变化,指数函数y=ax(a>0,a≠1)的图象与直线x=1相交于点(1,a),由图象可知:在y轴右侧,图象从下到上相应的底数由小变大.
(2)指数函数的底数与图象间的关系可概括记忆为:在第一象限内,底数自下而上依次增大.
跟踪训练2 (1)已知1>n>m>0,则指数函数①y=mx,②y=nx的图象为( )
(2)若a>1,-1
A.第一、二、三象限 B.第一、三、四象限
C.第二、三、四象限 D.第一、二、四象限
解析:(1)由于0
(2)∵a>1,且-1
答案: (1)C (2)A,
由底数的范围判断函数图象.
类型三 指数函数的定义域、值域问题
例3 (1)函数y= 的定义域是( )
A.[-2,+∞) B.[-1,+∞)
C.(-∞,-1] D.(-∞,-2]
(2)已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为( )
A.[9,81] B.[3,9]
C.[1,9] D.[1,+∞)
【解析】 (1)由题意得2x-1-27≥0,所以2x-1≥27,即2x-1≥-3,又指数函数y=x为R上的单调减函数,所以2x-1≤-3,解得x≤-1.
(2)由f(x)的图象过点(2,1)可知b=2,由f(x)=3x-2在[2,4]上是增函数,可知f(x)min=f(2)=1,f(x)max=f(4)=9,可知C正确.
【答案】 (1)C (2)C
(1)首先根式有意义,然后根据函数的单调性解指数不等式.
(2)根据函数的单调性求值域.
方法归纳
(1)对于y=af(x)这类函数,
①定义域是指使f(x)有意义的x的取值范围.
②值域问题,应分以下两步求解:
ⅰ由定义域求出u=f(x)的值域;
ⅱ利用指数函数y=au的单调性或利用图象求得此函数的值域.
(2)对于y=(ax)2+b·ax+c这类函数,
①定义域是R.
②值域可以分以下两步求解:
ⅰ设t=ax,求出t的范围;
ⅱ利用二次函数y=t2+bt+c的配方法求函数的值域.
跟踪训练3 (1)求函数y=的定义域与值域.
(2)函数f(x)=ax(a>0,a≠1)在[1,2]上的最大值比最小值大,求a.
解析:(1)由x-2≥0,得x≥2,所以定义域为{x|x≥2}.当x≥2时,≥0,又因为0<<1,所以y=的值域为{y|0
(2)①若a>1,则f(x)在[1,2]上单调递增,最大值为a2,最小值为a,所以a2-a=,即a=或a=0(舍去).
②若0<a<1,则f(x)在[1,2]上单调递减,最大值为a,最小值为a2,所以a-a2=,即a=或a=0(舍去).
综上所述,a的值为或.
(1)偶次根式被开方数大于等于0.
(2)先判断函数单调性,再求最值.
[基础巩固](25分钟,60分)
一、选择题(每小题5分,共25分)
1.若函数f(x)=·ax是指数函数,则f的值为( )
A.2 B.-2
C.-2 D.2
解析:∵函数f(x)是指数函数,∴a-3=1,∴a=8.
∴f(x)=8x,f=8=2.
答案:D
2.在同一坐标系中,函数y=2x与y=x的图象之间的关系是( )
A.关于y轴对称 B.关于x轴对称
C.关于原点对称 D.关于直线y=x对称
解析:由作出两函数图象可知,两函数图象关于y轴对称,故选A.
答案:A
3.当x∈[-1,1]时,函数f(x)=3x-2的值域是( )
A. B.[-1,1]
C. D.[0,1]
解析:因为指数函数y=3x在区间[-1,1]上是增函数,所以3-1≤3x≤31,于是3-1-2≤3x-2≤31-2,即-≤f(x)≤1.故选C.
答案:C
4.如果指数函数f(x)=(a-1)x是R上的单调减函数,那么a的取值范围是( )
A.a<2 B.a>2
C.1
解析:由题意知0
答案:C
5.在同一平面直角坐标系中,函数f(x)=ax与g(x)=ax的图象可能是( )
解析:需要对a讨论:
①当a>1时,f(x)=ax过原点且斜率大于1,g(x)=ax是递增的;②当0
答案:B
二、填空题(每小题5分,共15分)
6.若指数函数y=f(x)的图象经过点,则f=________.
解析:设f(x)=ax(a>0且a≠1).
因为f(x)过点,
所以=a-2,
所以a=4.
所以f(x)=4x,
所以f=4-=.
答案:
7.函数f(x)=的值域为________.
解析:由1-ex≥0得,ex≤1,故函数f(x)的定义域为{x|x≤0},所以0
答案:[0,1)
8.已知函数f(x)=4+ax-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是________.
解析:令x-1=0,得x=1,此时f(1)=5.所以函数f(x)=4+ax-1(a>0且a≠1)的图象恒过定点P(1,5).
答案:(1,5)
三、解答题(每小题10分,共20分)
9.设f(x)=3x,g(x)=x.
(1)在同一坐标系中作出f(x),g(x)的图象;
(2)计算f(1)与g(-1),f(π)与g(-π),f(m)与g(-m)的值,从中你能得到什么结论?
解析:(1)函数f(x)与g(x)的图象如图所示:
(2)f(1)=31=3,g(-1)=-1=3;
f(π)=3π,g(-π)=-π=3π;
f(m)=3m,g(-m)=-m=3m.
从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y轴对称.
10.求下列函数的定义域和值域:
(1)y=2-1;(2)y=
解析:(1)要使y=2-1有意义,需x≠0,则2≠1;故2-1>-1且2-1≠0,故函数y=2-1的定义域为{x|x≠0},函数的值域为(-1,0)∪(0,+∞).
(2)函数y=的定义域为实数集R,由于2x2≥0,则2x2-2≥-2.
故0<≤9,所以函数y=的值域为(0,9].
[能力提升](20分钟,40分)
11.函数y=ax在区间[0,1]上的最大值和最小值的和为3,则函数y=3ax-1在区间[0,1]上的最大值是( )
A.6 B.1
C.5 D.
解析:由于函数y=ax在[0,1]上为单调函数,
所以有a0+a1=3,即a=2.
所以函数y=3ax-1,即y=6x-1在[0,1]上单调递增,其最大值为y=6×1-1=5.故选C.
答案:C
12.若关于x的方程2x-a+1=0有负根,则a的取值范围是________.
解析:因为2x=a-1有负根,
所以x<0,
所以0<2x<1.
所以0
所以1
答案:(1,2)
13.求函数y=x-3×x+2,x∈[-2,2]的值域.
解析:y=x-3×x+2=2x-3×x+2,令t=x,则y=t2-3t+2=2-.
∵x∈[-2,2],∴≤t=x≤4,当t=时,ymin=-;当t=4时,ymax=6.
∴函数y=x-3×x+2,x∈[-2,2]的值域是[-,6].
14.若函数f(x)=ax-1(a>0,a≠1)的定义域和值域都是[0,2],求实数a的值.
解析:当a>1时,f(x)在[0,2]上递增,
∴即
∴a=±.
又a>1,∴a=;
当0
∴
即解得a∈?.
综上所述,实数a的值为.
[基础巩固](25分钟,60分)
一、选择题(每小题5分,共25分)
1.对于下列说法:
(1)零和负数没有对数;
(2)任何一个指数式都可以化成对数式;
(3)以10为底的对数叫做自然对数;
(4)以e为底的对数叫做常用对数.
其中错误说法的个数为( )
A.1 B.2
C.3 D.4
解析:只有符合a>0,且a≠1,N>0,才有ax=N?x=logaN,故(2)错误.由定义可知(3)(4)均错误.只有(1)正确.
答案:C
2.将-2=9写成对数式,正确的是( )
A.log9=-2 B.log9=-2
C.log (-2)=9 D.log9(-2)=
解析:根据对数的定义,得log9=-2,故选B.
答案:B
3.若loga2b=c则( )
A.a2b=c B.a2c=b
C.bc=2a D.c2a=b
解析:loga2b=c?(a2)c=b?a2c=b.
答案:B
4.3-27-lg 0.01+ln e3等于( )
A.14 B.0
C.1 D.6
解析:3log34-27-lg 0.01+ln e3=4--lg+3=4-32-(-2)+3=0.选B.
答案:B
5.已知loga=m,loga3=n,则am+2n等于( )
A.3 B.
C.9 D.
解析:由已知得am=,an=3.
所以am+2n=am×a2n=am×(an)2=×32=.故选D.
答案:D
二、填空题(每小题5分,共15分)
6.求下列各式的值:
(1)log636=________;
(2)ln e3=________;
(3)log50.2=________;
(4)lg 0.01=________.
解析:(1)log636=2.
(2)ln e3=3.
(3)log50.2=log55-1=-1.
(4)lg 0.01=lg 10-2=-2.
答案:(1)2 (2)3 (3)-1 (4)-2
7.计算: +ln e2=________.
解析:+ln e2=π-3+2=π-1.
答案:π-1
8.10lg 2-ln e=________.
解析:ln e=1,
所以原式=10lg2-1=10lg 2×10-1
=2×=.
答案:
三、解答题(每小题10分,共20分)
9.将下列指数式与对数式互化:
(1)log216=4; (2)log27=-3;
(3)logx=6; (4)43=64;
(5)3-2=; (6)-2=16.
解析:(1)24=16;(2)-3=27;
(3)()6=x;(4)log464=3;
(5)log3=-2;(6)log16=-2.
10.计算下列各式:
(1)2ln e+lg 1+3log3 2;
(2)3log34-lg 10+2ln 1.
解析:(1)原式=21+0+2=2+2=4.
(2)原式=3log34-1+20
=3log34÷31+1
=+1=.
[能力提升](20分钟,40分)
11.已知f(2x+1)=,则f(4)等于( )
A.log25 B.log23
C. D.
解析:令2x+1=4,得x=log23,
所以f(4)=log23,选B.
答案:B
12.若log(x-1)(3-x)有意义,则x的取值范围是________.
解析:由已知得
解得1
即x的取值范围是(1,2)∪(2,3).
答案:(1,2)∪(2,3)
13.求下列各式中x的值:
(1)log3(log2x)=0;
(2)log2(lgx)=1;
(3)5=x;
(4) (a)=x(a>0,b>0,c>0,a≠1,b≠1).
解析:(1)∵log3(log2x)=0,∴log2x=1.∴x=21=2.
(2)∵log2(lg x)=1,∴lg x=2.∴x=102=100.
(3)x=5==.
(4)x=(a)=b=c.
14.计算下列各式:
(1)10lg 3-()+eln 6;
(2)2+3.
解析:(1)原式=3-()0+6
=3-1+6
=8.
(2)原式=22÷2+3-2·3
=4÷3+×6
=+
=2.
课件20张PPT。
[基础巩固](25分钟,60分)
一、选择题(每小题5分,共25分)
1.若a>0,a≠1,x>y>0,下列式子:
①logax·logay=loga(x+y);②logax-logay=loga(x-y);③loga=logax÷logay;④loga(xy)=logax·logay.其中正确的个数为( )
A.0个 B.1个
C.2个 D.3个
解析:根据对数的性质知4个式子均不正确.
答案:A
2.化简log612-2log6的结果为( )
A.6 B.12
C.log6 D.
解析:log612-2log6=(1+log62)-log62=(1-log62)=log63=log6.
答案:C
3.设lg 2=a,lg 3=b,则=( )
A. B.
C. D.
解析:===.
答案:C
4.若log34·log8m=log416,则m等于( )
A.3 B.9
C.18 D.27
解析:原式可化为log8m=,=,
即lg m=,lg m=lg 27,m=27.故选D.
答案:D
5.若lg x=m,lg y=n,则lg-lg2的值为( )
A.m-2n-2 B.m-2n-1
C.m-2n+1 D.m-2n+2
解析:因为lg x=m,lg y=n,所以lg-lg2=lg x-2lg y+2=m-2n+2.故选D.
答案:D
二、填空题(每小题5分,共15分)
6.lg 10 000=________;lg 0.001=________.
解析:由104=10 000知lg 10 000=4,10-3=0.001得lg 0.001=-3,注意常用对数不是没有底数,而是底数为10.
答案:4 -3
7.若log5·log36·log6x=2,则x等于________.
解析:由换底公式,
得··=2,
lg x=-2lg 5,x=5-2=.
答案:
8.·(lg 32-lg 2)=________.
解析:原式=×lg=·lg 24=4.
答案:4
三、解答题(每小题10分,共20分)
9.化简:(1);
(2)(lg 5)2+lg 2lg 50+21+log25.
解析:(1)方法一 (正用公式):
原式=
==.
方法二 (逆用公式):
原式=
==.
(2)原式=(lg 5)2+lg 2(lg 5+1)+21·2log2=lg 5·(lg 5+lg 2)+lg 2+2=1+2.
10.计算:(1)log1627log8132;
(2)(log32+log92)(log43+log83).
解析:(1)log1627log8132=×
=×=×=.
(2)(log32+log92)(log43+log83)
=
=
=log32×log23=××=.
[能力提升](20分钟,40分)
11.设9a=45,log95=b,则( )
A.a=b+9 B.a-b=1
C.a=9b D.a÷b=1
解析:由9a=45得a=log945=log99+log95=1+b,即a-b=1.
答案:B
12.设4a=5b=m,且+=1,则m=________.
解析:由4a=5b=m,得a=log4m,b=log5m,
所以logm4=,logm5=,
则+=logm4+logm5=logm10=1,
所以m=10.
答案:10
13.求下列各式的值:
(1)2log32-log3+log38-5log53;
(2)[(1-log63)2+log62·log618]÷log64.
解析:(1)原式=2log32-(log332-log39)+3log32-3
=2log32-5log32+2+3log32-3=-1.
(2)原式=[(log66-log63)2+log62·log6(2·32)]÷log64
=÷2log62
=[(log62)2+(log62)2+2·log62·log63]÷2log62
=log62+log63=log6(2·3)=1.
14.已知x,y,z均大于1,a≠0,logza=24,logya=40,log(xyz)a=12,求logxa.
解析:由logza=24得logaz=,
由logya=40得logay=,
由log(xyz)a=12得loga(xyz)=,
即logax+logay+logaz=.
所以logax++=,
解得logax=,所以logxa=60.
课件29张PPT。第2课时 指数函数及其性质的应用
[小试身手]
1.下列函数中是奇函数,且在(0,+∞)上单调递增的是( )
A.y= B.y=|x|
C.y=2x D.y=x3
解析:y=在(0,+∞)上单调递减,所以排除A;y=|x|是偶函数,所以排除B;y=2x为非奇非偶函数,所以排除C.选D.
答案:D
2.下列判断正确的是( )
A.1.51.5>1.52 B.0.52<0.53
C.e2<e D.0.90.2>0.90.5
解析:因为y=0.9x是减函数,且0.5>0.2,
所以0.90.2>0.90.5.
答案:D
3.已知y1=x,y2=3x,y3=10-x,y4=10x,则在同一平面直角坐标系内,它们的图象为( )
解析:方法一 y2=3x与y4=10x单调递增;y1=x与y3=10-x=x单调递减,在第一象限内作直线x=1,该直线与四条曲线交点的纵坐标对应各底数,易知选A.
方法二 y2=3x与y4=10x单调递增,且y4=10x的图象上升得快,y1=x与y2=3x的图象关于y轴对称,y3=10-x与y4=10x的图象关于y轴对称,所以选A.
答案:A
4.函数y=2的值域为________.
解析:令u=x2-2x=(x-1)2-1≥-1,
所以y=2u≥2-1=,
所以y=2的值域为.
答案:
类型一 利用指数函数单调性比较大小
例1 (1)已知a=0.771.2,b=1.20.77,c=π0,则a,b,c的大小关系是( )
A.a<b<c B.c<b<a C.a<c<b D.c<a<b
(2)已知a=,函数f(x)=ax,若实数m,n满足f(m)>f(n),则m,n的关系为( )
A.m+n<0 B.m+n>0 C.m>n D.m<n
【解析】 (1)a=0.771.2,0<a<1,b=1.20.77>1,c=π0=1,则a<c<b.
(2)因为0<<1,所以f(x)=ax=x在R上单调递减,
又因为f(m)>f(n),所以m<n,故选D.
【答案】 (1)C (2)D
要比较大小,由指数函数的单调性入手.也可找中间量来比较.
方法归纳
比较幂值大小的三种类型及处理方法
跟踪训练1 比较下列各题中两个值的大小:
(1)-1.8与-2.5;
(2)-0.5与-0.5;
(3)0.20.3与0.30.2.
解析:(1)因为0<<1,所以函数y=x在其定义域R上单调递减,又-1.8>-2.5,所以-1.8<-2.5.
(2)在同一平面直角坐标系中画出指数函数y=x与y=x的图象,如图所示.当x=-0.5时,由图象观察可得-0.5>-0.5.
(3)因为0<0.2<0.3<1,所以指数函数y=0.2x与y=0.3x在定义域R上均是减函数,且在区间(0,+∞)上函数y=0.2x的图象在函数y=0.3x的图象的下方,所以0.20.2<0.30.2.
又根据指数函数y=0.2x的性质可得0.20.3<0.20.2,所以0.20.3<0.30.2.
底数相同,指数不同;
底数不同,指数相同;
底数不同,指数不同.
类型二 解简单的指数不等式
例2 (1)不等式3x-2>1的解为________;
(2)若ax+1>5-3x(a>0,且a≠1),求x的取值范围.
【解析】 (1)3x-2>1?3x-2>30?x-2>0?x>2,所以解为(2,+∞).
(2)因为ax+1>5-3x,所以当a>1时,y=ax为增函数,可得x+1>3x-5,所以x<3.
当0<a<1时,y=ax为减函数,可得x+1<3x-5,所以x>3.
综上,当a>1时,x的取值范围为(-∞,3),
当0<a<1时,x的取值范围为(3,+∞).
【答案】 (1)(2,+∞) (2)见解析
首先确定指数不等式对应函数的单调性,然后根据单调性确定x的取值范围.
方法归纳
解指数不等式应注意的问题
(1)形如ax>ab的不等式,借助于函数y=ax的单调性求解,如果a的取值不确定,需分a>1与0
(2)形如ax>b的不等式,注意将b转化为以a为底数的指数幂的形式,再借助于函数y=ax的单调性求解.
跟踪训练2 (1)解不等式≤3;
(2)已知(a2+2a+3)x>(a2+2a+3)1-x,求x的取值范围.
解析:(1) =(3-1) =3,
∴原不等式等价于 3≤31.
∵y=3x是R上的增函数,∴2-x2≤1.
∴x2≥1,即x≥1或x≤-1.
∴原不等式的解集是{x|x≥1或x≤-1}.
(2)∵a2+2a+3=(a+1)2+2>1,
∴y=(a2+2a+3)x在R上是增函数.
∴x>1-x,解得x>.
∴x的取值范围是.
(1)化成同底,确定指数函数的单调性.
(2)判断a2+2a+3的范围.,
类型三 指数函数性质的综合应用
例3 已知函数f(x)=a-(x∈R).
(1)用定义证明:不论a为何实数,f(x)在(-∞,+∞)上为增函数;
(2)若f(x)为奇函数,求f(x)在区间[1,5]上的最小值.
【解析】 (1)证明:因为f(x)的定义域为R,任取x1
则f(x1)-f(x2)==.
因为x1
所以2-2<0,
又(1+2)(1+2)>0.
所以f(x1)-f(x2)<0,即f(x1)
所以不论a为何实数,f(x)在(-∞,+∞)上为增函数.
(2)因为f(x)在x∈R上为奇函数,
所以f(0)=0,
即a-=0,解得a=.
所以f(x)=-,
由(1)知,f(x)为增函数,
所以f(x)在区间[1,5]上的最小值为f(1).
因为f(1)=-=,
所以f(x)在区间[1,5]上的最小值为.
(1)用定义法证明函数的单调性需4步:
①取值;②作差变形;
③定号;④结论 .
(2)先由f(x)为奇函数求a,再由单调性求最小值.
方法归纳
(1)求解含参数的由指数函数复合而成的奇、偶函数中的参数问题,可利用奇、偶函数的定义,根据f(-x)=-f(x)或f(-x)=f(x),结合指数运算性质建立方程求参数;
(2)若奇函数在原点处有定义,则可利用f(0)=0,建立方程求参数.
跟踪训练3 已知定义在R上的函数f(x)=2x+,a为常数,若f(x)为偶函数,
(1)求a的值;
(2)判断函数f(x)在(0,+∞)上的单调性,并用单调性定义给予证明;
(3)求函数f(x)的值域.
解析:(1)由f(x)为偶函数得对任意实数x都有2x+=+a·2x成立,即2x(1-a)=·(1-a),
所以1-a=0,
所以a=1.
(2)由(1)知f(x)=2x+,f(x)在(0,+∞)上单调递增.
证明如下:任取x2,x2∈(0,+∞)且x1
则f(x1)-f(x2)=2+-=(2-2)+=(2-2)+=(2-2)=(2-2)·,
因为x1
所以2<2,2 >1,
所以f(x1)-f(x2)<0,即f(x1)
所以f(x)在(0,+∞)上单调递增.
(3)由(2)知f(x)在[0,+∞)上单调递增,
又由f(x)为偶函数知函数f(x)在(-∞,0]上单调递减,
所以f(x)≥f(0)=2.
故函数f(x)的值域为[2,+∞).
(1)由偶函数求a.
(2)4步法证明f(x)在(0,+∞)上的单调性.
(3)利用单调性求最值,得值域.
[基础巩固](25分钟,60分)
一、选择题(每小题5分,共25分)
1.下列大小关系正确的是( )
A.0.43<30.4<π0 B.0.43<π0<30.4
C.30.4<0.43<π0 D.π0<30.4<0.43
解析:因为π0=1,0.43<0.40=1,30.4>30=1,所以0.43<π0<30.4,故选B.
答案:B
2.设f(x)=|x|,x∈R,那么f(x)是( )
A.奇函数且在(0,+∞)上是增函数
B.偶函数且在(0,+∞)上是增函数
C.奇函数且在(0,+∞)上是减函数
D.偶函数且在(0,+∞)上是减函数
解析:因为f(-x)=|-x|=|x|=f(x),
所以f(x)为偶函数.
又当x>0时,f(x)=x在(0,+∞)上是减函数,
故选D.
答案:D
3.已知1>n>m>0,则指数函数①y=mx,②y=nx的图象是( )
解析:由1>n>m>0可知两曲线应为“下降”的曲线,故排除A,B,再由n>m可知应选C.
答案:C
4.若2a+1<3-2a,则实数a的取值范围是( )
A.(1,+∞) B.
C.(-∞,1) D.
解析:函数y=x在R上为减函数,所以2a+1>3-2a,所以a>.
答案:B
5.设x>0,且1<bx<ax,则( )
A.0<b<a<1 B.0<a<b<1
C.1<b<a D.1<a<b
解析:∵1<bx,∴b0<bx.又x>0,∴b>1.
∵bx<ax,∴x>1,又x>0,∴>1,
∴a>b,即1<b<a.
答案:C
二、填空题(每小题5分,共15分)
6.三个数,,中,最大的是________,最小的是________.
解析:因为函数y=x在R上是减函数,
所以>,
又在y轴右侧函数y=x的图象始终在函数y=x的图象的下方,
所以>.即>>.
答案:
7.函数y=的单调增区间是________.
解析:令t=x2-4x+3,则其对称轴为x=2.
当x≤2时,t随x增大而减小,
则y增大,即y=的单调增区间为(-∞,2].
答案:(-∞,2]
8.已知f(x)=a-x(a>0且a≠1),且f(-2)>f(-3),则a的取值范围是________.
解析:f(x)=a-x=x,
∵f(-2)>f(-3),
∴-2>-3,即a2>a3.
∴a<1,即0
答案:(0,1)
三、解答题(每小题10分,共20分)
9.比较下列各组值的大小:
(1)1.8-0.1与1.8-0.2;
(2)1.90.3与0.73.1;
(3)a1.3与a2.5(a>0,且a≠1).
解析:(1)由于1.8>1,所以指数函数y=1.8x,在R上为增函数.所以1.8-0.1>1.8-0.2.
(2)因为1.90.3>1,0.73.1<1,所以1.90.3>0.73.1.
(3)当a>1时,函数y=ax是增函数,此时a1.3
当0
a2.5.
故当0
a2.5,当a>1时,a1.3
10.函数f(x)=的定义域为集合A,关于x的不等式2x>2-a-x(a∈R)的解集为B,求使A∩B=B的实数a的取值范围.
解析:由≥0,解得x≤-2或x>1,
于是A=(-∞,-2]∪(1,+∞),
2x>2-a-x?2x>a+x?2x
因为A∩B=B,所以B?A,所以a≤-2,
即a的取值范围是(-∞,-2].
[能力提升](20分钟,40分)
11.已知函数f(x)=ax(a>0,且a≠1)在(0,2)内的值域是(1,a2),则函数y=f(x)的大致图象是( )
解析:对于函数f(x)=ax,当x=0时,f(0)=a0=1,当x=2时,f(2)=a2.
由于指数函数是单调函数,则有a2>1,即a>1.
所以函数f(x)的图象是上升的,且在x轴上方,结合选项可知B正确.
答案:B
12.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-的解集是________.
解析:设x<0,-x>0,因为f(x)是奇函数,所以f(x)=-f(-x)=-(1-2x)=2x-1,当x>0时,1-2-x∈(0,1),所以不等式f(x)<-,即当x<0时,2x-1<-,解得x<-1.
答案:(-∞,-1)
13.函数f(x)=ax(a>0,且a≠1)在[1,2]上的最大值比最小值大,求a的值.
解析:分情况讨论:
①当0<a<1时,函数f(x)=ax(a>0,且a≠1)在[1,2]上的最大值f(x)max=f(1)=a1=a,最小值f(x)min=f(2)=a2,
∴a-a2=,解得a=或a=0(舍去);
②当a>1时,函数f(x)=ax(a>0,且a≠1)在[1,2]上的最大值f(x)max=f(2)=a2,最小值f(x)min=f(1)=a1=a,
∴a2-a=,解得a=或a=0(舍去).
综上所述,a=或a=.
14.已知函数f(x)=ax+b(a>0,且a≠1).若f(x)的图象如图所示,
(1)求a,b的值;
(2)解不等式f(x)≥2.
解析:(1)由图象得,点(1,0),(0,-1)在函数f(x)的图象上,所以
解得
∴f(x)=2x-2.
(2)f(x)=2x-2≥2,
∴2x≥4,∴x≥2.
∴不等式的解集为[2,+∞).
点击下载
同课章节目录
第一章 集合与函数概念
1.1 集合
1.2 函数及其表示
1.3 函数的基本性质
第二章 基本初等函数(Ⅰ)
2.1 指数函数
2.2 对数函数
2.3 幂函数
第三章 函数的应用
3.1 函数与方程
3.2 函数模型及其应用
点击下载
VIP下载