人教版高中数学必修四教学资料,补习资料:2.1.2相等向量与共线向量 6份

文档属性

名称 人教版高中数学必修四教学资料,补习资料:2.1.2相等向量与共线向量 6份
格式 zip
文件大小 3.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-08-30 14:05:59

文档简介

第二章 平面向量
§2.1 平面向量的实际背景及基本概念
课时目标 1.通过对物理模型和几何模型的探究,了解向量的实际背景,掌握向量的有关概念及向量的几何表示.2.掌握平行向量与相等向量的概念.
1.向量:既有________,又有________的量叫向量.
2.向量的几何表示:以A为起点,B为终点的向量记作________.
3.向量的有关概念:
(1)零向量:长度为__________的向量叫做零向量,记作______.
(2)单位向量:长度为______的向量叫做单位向量.
(3)相等向量:__________且__________的向量叫做相等向量.
(4)平行向量(共线向量):方向__________的________向量叫做平行向量,也叫共线向量.
①记法:向量a平行于b,记作________.
②规定:零向量与__________平行.
一、选择题
1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有(  )
A.1个   B.2个   C.3个   D.4个
2.下列条件中能得到a=b的是(  )
A.|a|=|b|
B.a与b的方向相同
C.a=0,b为任意向量
D.a=0且b=0
3.下列说法正确的有(  )
①方向相同的向量叫相等向量;②零向量的长度为0;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同.
A.2个 B.3个 C.4个 D.5个
4.命题“若a∥b,b∥c,则a∥c”(  )
A.总成立 B.当a≠0时成立
C.当b≠0时成立 D.当c≠0时成立
5.下列各命题中,正确的命题为(  )
A.两个有共同起点且共线的向量,其终点必相同
B.模为0的向量与任一向量平行
C.向量就是有向线段
D.|a|=|b|?a=b
6.下列说法正确的是(  )
A.向量∥就是所在的直线平行于所在的直线
B.长度相等的向量叫做相等向量
C.零向量长度等于0
D.共线向量是在一条直线上的向量
题 号
1
2
3
4
5
6
答 案
二、填空题
7.给出以下5个条件:①a=b;②|a|=|b|;③a与b的方向相反;④|a|=0或|b|=0;⑤a与b都是单位向量.其中能使a∥b成立的是________.(填序号)
8.在四边形ABCD中,=且||=||,则四边形的形状为________.
9.下列各种情况中,向量的终点在平面内各构成什么图形.
①把所有单位向量移到同一起点;
②把平行于某一直线的所有单位向量移到同一起点;
③把平行于某一直线的一切向量移到同一起点.
①__________;②____________;③____________.
10.如图所示,E、F分别为△ABC边AB、AC的中点,则与向量共线的向量有________________(将图中符合条件的向量全写出来).
三、解答题
11. 在如图的方格纸上,已知向量a,每个小正方形的边长为1.
(1)试以B为终点画一个向量b,使b=a;
(2)在图中画一个以A为起点的向量c,使|c|=,并说出向量c的终点的轨迹是什么?
12. 如图所示,△ABC的三边均不相等,E、F、D分别是AC、AB、BC的中点.
(1)写出与共线的向量;
(2)写出与的模大小相等的向量;
(3)写出与相等的向量.
能力提升
13. 如图,已知==.
求证:(1)△ABC≌△A′B′C′;
(2)=,=.
14. 如图所示,O是正六边形ABCDEF的中心,且=a,=b,=c.
(1)与a的模相等的向量有多少个?
(2)与a的长度相等,方向相反的向量有哪些?
(3)与a共线的向量有哪些?
(4)请一一列出与a,b,c相等的向量.
1.向量是既有大小又有方向的量,解决向量问题时一定要从大小和方向两个方面去考虑.
2.向量不能比较大小,但向量的模可以比较大小.如a>b没有意义,而|a|>|b|有意义.
3.共线向量与平行向量是同一概念,规定:零向量与任一向量都平行.
§2.1 平面向量的实际背景及基本概念
答案
知识梳理
1.大小 方向 2.
3.(1)0 0 (2)1 (3)长度相等 方向相同 (4)相同或相反 非零 ①a∥b ②任一向量
作业设计
1.D 2.D
3.A [②与⑤正确,其余都是错误的.]
4.C [当b=0时,不成立,因为零向量与任何向量都平行.]
5.B [由于模为0的向量是零向量,只有零向量的方向不确定,它与任一向量平行,故选B.]
6.C [向量∥包含所在的直线平行于所在的直线和所在的直线与所在的直线重合两种情况;相等向量不仅要求长度相等,还要求方向相同;共线向量也称为平行向量,它们可以是在一条直线上的向量,也可以是所在直线互相平行的向量,所以A、B、D均错.]
7.①③④
解析 相等向量一定是共线向量,①能使a∥b;方向相同或相反的向量一定是共线向量,③能使a∥b;零向量与任一向量平行,④成立.
8.菱形
解析 ∵=,∴AB綊DC
∴四边形ABCD是平行四边形,
∵||=||,∴四边形ABCD是菱形.
9.单位圆 相距为2的两个点 一条直线
10.,,
解析 ∵E、F分别为△ABC对应边的中点,
∴EF∥BC,
∴符合条件的向量为,,.
11.解 (1)根据相等向量的定义,所作向量与向量a平行,且长度相等(作图略).
(2)由平面几何知识可知所有这样的向量c的终点的轨迹是以A为圆心,半径为的圆(作图略).
12.解 (1)因为E、F分别是AC、AB的中点,
所以EF綊BC.又因为D是BC的中点,
所以与共线的向量有:,,,,,,.
(2)与模相等的向量有:,,,,.
(3)与相等的向量有:与.
13.证明 (1)∵=,
∴||=||,且∥.
又∵A不在上,∴AA′∥BB′.
∴四边形AA′B′B是平行四边形.
∴||=||.
同理||=||,||=||.
∴△ABC≌△A′B′C′.
(2)∵四边形AA′B′B是平行四边形,
∴∥,且||=||.
∴=.同理可证=.
14.解 (1)与a的模相等的向量有23个.
(2)与a的长度相等且方向相反的向量有,,,.
(3)与a共线的向量有,,,,,,,,.
(4)与a相等的向量有,,;与b相等的向量有,,;与c相等的向量有,,.
课件22张PPT。2.1.1 向量的物理背景与概念及向量的几何表示
教学目标:
了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
教学难点:平行向量、相等向量和共线向量的区别和联系.
学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.
教学思路: (一)
一、情景设置:
如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上
都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
二、新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:;④向量的大小―长度称为向量的模,记作||.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.
向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
(四)理解和巩固:
例1 书本75页例1.
例2判断:
(1)平行向量是否一定方向相同?(不一定)
(2)与任意向量都平行的向量是什么向量?(零向量)
(3)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)
课堂练习:
书本77页练习1、2、3题
三、小结 :
描述向量的两个指标:模和方向.
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
四、课后作业:
《学案》P49面的学法引导,及P44面的单元检测卷。
2.1.3 相等向量与共线向量
教学目标:
掌握相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重点:理解并掌握相等向量、共线向量的概念,
教学难点:平行向量、相等向量和共线向量的区别和联系.
教学思路:
一、情景设置:
(一)、复习
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
(二)、新课学习
1、有一组向量,它们的方向相同、大小相同,这组向量有什么关系?
2、任一组平行向量都可以移到同一直线上吗?这组向量有什么关系?
三、探究学习
1、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的起点无关.
2、共线向量与平行向量关系:
平行向量就是共线向量,因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;
(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
四、理解和巩固:
例1.如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?()
例2判断:
(1)不相等的向量是否一定不平行?(不一定)
(2)与零向量相等的向量必定是什么向量?(零向量)
(3)两个非零向量相等的当且仅当什么?(长度相等且方向相同)
(4)共线向量一定在同一直线上吗?(不一定)
例3下列命题正确的是( )?
A.a与b共线,b与c共线,则a与c也共线?
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点?
C.向量a与b不共线,则a与b都是非零向量?
D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.?
①向量与是共线向量,则A、B、C、D四点必在一直线上;?
②单位向量都相等;?
③任一向量与它的相反向量不相等;?
④四边形ABCD是平行四边形当且仅当=
⑤一个向量方向不确定当且仅当模为0;?
⑥共线的向量,若起点不同,则终点一定不同.
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图与共线,虽起点不同,但其终点却相同.
2.书本77页练习4题
三、小结 :
描述向量的两个指标:模和方向.
2、平行向量不是平面几何中的平行线段的简单类比.
3、共线向量与平行向量关系、相等向量。
四、课后作业:
《习案》作业十八。
课件26张PPT。2.1.3相等向量与
共线向量复习引入(1)数量与向量有何区别?
(2)如何表示向量?
(3)有向线段和线段有何区别和联系?分别
可以表示向量的什么?
(4)长度为零的向量叫什么向量?长度为1
的向量叫什么向量?讲授新课(5)满足什么条件的两个向量是相同向量?
单位向量是相同向量吗?
(6)有一组向量,它们的方向相同或相反,
这组向量有什么关系?
(7)如果把一组平行向量的起点全部移到一
点O,这时它们是不是平行向量?这时
各向量的终点之间有什么关系?讲授新课 有一组向量,它们的方向相同、大小相
同,这组向量有什么关系?2. 任一组平行向量都可以移到同一直线上
吗?这组向量有什么关系?问题讲授新课1. 相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:
(1) 向量a与b相等,记作a=b;
(2) 零向量与零向量相等;
(3) 任意两个相等的非零向量,都可用同
一条有向线段表示,并且与有向线段
的起点无关.abc讲授新课2. 共线向量与平行向量关系:
平行向量就是共线向量,因为任一组
平行向量都可移到同一直线上(与有向线段
的起点无关).
说明:
(1) 平行向量可以在同一直线上,要区别于
两平行线的位置关系;
(2) 共线向量可以相互平行,要区别于在
同一直线上的线段的位置关系.例1. 如图,设O是正六边形
ABCDEF的中心,分别写出
图中与向量
相等的向量.讲授新课例1. 如图,设O是正六边形
ABCDEF的中心,分别写出
图中与向量
相等的向量.讲授新课变式一:与向量 长度相等的向量有多
少个?
变式二:是否存在与 向量长度相等、
方向相反的向量?
变式三:与向量 共线的向量有哪些? 讲授新课例2. 判断:
(1) 不相等的向量是否一定不平行?
(2) 与零向量相等的向量必定是什么向量?
(3) 两个非零向量相等的条件是什么?

(4) 共线向量一定在同一直线上吗?讲授新课不一定例2. 判断:
(1) 不相等的向量是否一定不平行?
(2) 与零向量相等的向量必定是什么向量?
(3) 两个非零向量相等的条件是什么?

(4) 共线向量一定在同一直线上吗?讲授新课不一定零向量例2. 判断:
(1) 不相等的向量是否一定不平行?
(2) 与零向量相等的向量必定是什么向量?
(3) 两个非零向量相等的条件是什么?

(4) 共线向量一定在同一直线上吗?讲授新课例2. 判断:
(1) 不相等的向量是否一定不平行?
(2) 与零向量相等的向量必定是什么向量?
(3) 两个非零向量相等的条件是什么?
(4) 共线向量一定在同一直线上吗?不一定零向量长度相等且方向相同讲授新课例2. 判断:
(1) 不相等的向量是否一定不平行?
(2) 与零向量相等的向量必定是什么向量?
(3) 两个非零向量相等的条件是什么?

(4) 共线向量一定在同一直线上吗?不一定不一定零向量长度相等且方向相同讲授新课例3. 下列命题正确的是 ( )
A. a与b共线,b与c共线,则a与c也共线?
B. 任意两个相等的非零向量的始点与终点
是一平行四边形的四顶点?
C. 向量a与b不共线,则a与b都是非零向量?
D. 有相同起点的两个非零向量不平行讲授新课例3. 下列命题正确的是 ( C )
A. a与b共线,b与c共线,则a与c也共线?
B. 任意两个相等的非零向量的始点与终点
是一平行四边形的四顶点?
C. 向量a与b不共线,则a与b都是非零向量?
D. 有相同起点的两个非零向量不平行讲授新课练习.①向量 是共线向量,则A、B、
C、D四点必在一直线上;?
②单位向量都相等;?
③任一向量与它的相反向量不相等;?
④四边形ABCD是平行四边形当且仅当1.判断下列命题是否正确,若不正确,
请简述理由.?讲授新课练习.①向量 是共线向量,则A、B、
C、D四点必在一直线上;?
②单位向量都相等;?
③任一向量与它的相反向量不相等;?
④四边形ABCD是平行四边形当且仅当1.判断下列命题是否正确,若不正确,
请简述理由.?讲授新课1.判断下列命题是否正确,若不正确,
请简述理由.?练习.①向量 是共线向量,则A、B、
C、D四点必在一直线上;?
②单位向量都相等;?
③任一向量与它的相反向量不相等;?
④四边形ABCD是平行四边形当且仅当讲授新课练习.①向量 是共线向量,则A、B、
C、D四点必在一直线上;?
②单位向量都相等;?
③任一向量与它的相反向量不相等;?
④四边形ABCD是平行四边形当且仅当1.判断下列命题是否正确,若不正确,
请简述理由.?讲授新课练习.①向量 是共线向量,则A、B、
C、D四点必在一直线上;?
②单位向量都相等;?
③任一向量与它的相反向量不相等;?
④四边形ABCD是平行四边形当且仅当1.判断下列命题是否正确,若不正确,
请简述理由.?讲授新课练习.1.判断下列命题是否正确,若不正确,
请简述理由.?⑤一个向量方向不确定当且仅当模为0;?
⑥共线的向量,若起点不同,则终点一
定不同.讲授新课练习.1.判断下列命题是否正确,若不正确,
请简述理由.?⑤一个向量方向不确定当且仅当模为0;?
⑥共线的向量,若起点不同,则终点一
定不同.讲授新课练习.1.判断下列命题是否正确,若不正确,
请简述理由.?⑤一个向量方向不确定当且仅当模为0;?
⑥共线的向量,若起点不同,则终点一
定不同.讲授新课练习.2.教材P.77练习第4题.1.判断下列命题是否正确,若不正确,
请简述理由.?⑤一个向量方向不确定当且仅当模为0;?
⑥共线的向量,若起点不同,则终点一
定不同. 描述向量的两个指标:模和方向.
平行向量不是平面几何中的平行线段
的简单类比.
3. 共线向量与平行向量的关系、相等向量.课堂小结 阅读教材P.74-P.76;  
《习案》作业十七.课后作业双基限时练(十四)
1.已知a,b,c是非零向量,则(a+c)+b,b+(a+c),b+(c+a),c+(a+b),c+(b+a)中,与向量a+b+c相等的向量的个数为(  )
A.5 B.4
C.3 D.2
解析 向量加法满足交换律,
所以五个向量均等于a+b+c.
答案 A
2.向量(+)+(+)+化简后等于(  )
A. B.
C. D.
解析 (+)+(+)+=(+)+(++)=+0=,故选C.
答案 C
3.向量a,b皆为非零向量,下列说法不正确的是(  )
A.向量a与b反向,且|a|>|b|,则向量a+b与a的方向相同
B.向量a与b反向,且|a|<|b|,则向量a+b与a的方向相同
C.向量a与b同向,则向量a+b与a的方向相同
D.向量a与b同向,则向量a+b与b的方向相同
解析 向量a与b反向,且|a|<|b|,则a+b应与b方向相同,因此B错.
答案 B
4.设P是△ABC所在平面内一点,+=2,则(  )
A.+=0 B.+=0
C.+=0 D.++=0
解析 由向量加法的平行四边形法则易知,与的和向量过AC边的中点,且长度是AC边中线长的2倍,结合已知条件知,P为AC的中点,故+=0.
答案 C
5.正方形ABCD的边长为1,=a,=c,=b,则|a+b+c|为(  )
A.0 B.
C.3 D.2
解析 |a+b+c|=|2c|=2|c|=2.应选D.
答案 D
6.在?ABCD中,若|+B|=|B+|,则四边形ABCD是(  )
A.菱形 B.矩形
C.正方形 D.不确定
解析 |+|=|+|=||,
|+|=||,
由||=||知四边形ABCD为矩形.
答案 B
7.
根据图示填空.
(1)+=________;
(2)++=________;
(3)++2=________.
解析 由三角形法则知
(1)+=+=;
(2)++=;
(3)++2=+.
答案 (1) (2) (3)+
8.在正方形ABCD中,边长为1,=a,=b,则|a+b|=________.
解析 a+b=+=,
∴|a+b|=||=.
答案 
9.若P为△ABC的外心,且+=,则∠ACB=__________.
解析 ∵+=,则四边形APBC是平行四边形.
又P为△ABC的外心,
∴||=||=||.
因此∠ACB=120°.
答案 120°
10.设a表示“向东走了2 km”,b表示“向南走了2 km”,c表示“向西走了2 km”,d表示“向北走了2 km”,则
(1)a+b+c表示向________走了________km;
(2)b+c+d表示向________走了________km;
(3)|a+b|=________,a+b的方向是________.
解析 (1)如图①所示,a+b+c
表示向南走了2 km.
(2)如图②所示,b+c+d表示向西走了2 km.
(3)如图①所示,|a+b|==2,a+b的方向是东南.
答案 (1)南 2 km
(2)西 2 km
(3)2 东南
11.
如图,O为正六边形ABCDEF的中心,试通过计算用图中有向线段表示下列向量的和:
(1)+;
(2)+;
(3)+.
解 (1)因为四边形OABC是平行四边形,所以+=.
(2)因为BC∥AD∥FE;BC=FE=AD,
所以=,=,
所以+=+=.
(3)因为||=||,且与反向.
所以利用三角形法则可知+=0.
12.化简:(1)++;
(2)(+)+(+);
(3)+(+)+.
解 (1)++=++=.
(2)(+)+(+)
=(+)+(+)
=+=.
(3)+(+)+
=+++=0
13.
如右图所示,P,Q是△ABC的边BC上的两点,且=.
求证:+=+.
证明 由图可知=+,
=+,
∴+=+++.
∵=,
又与模相等,方向相反,
故+=+=0.
∴+=+.