人教版高中数学必修四教学资料,补习资料:2.5.2向量在物理中的应用举例5份

文档属性

名称 人教版高中数学必修四教学资料,补习资料:2.5.2向量在物理中的应用举例5份
格式 zip
文件大小 3.2MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-08-30 14:12:25

文档简介

课件27张PPT。2.5.2 向量在物理中的应用举例
课时目标 经历用向量方法解决某些简单的力学问题与其他的一些实际问题的过程,体会向量是一种处理物理问题等的工具,发展运算能力和解决实际问题的能力.
1.力向量
力向量与前面学过的自由向量有区别.
(1)相同点:力和向量都既要考虑________又要考虑________.
(2)不同点:向量与________无关,力和________有关,大小和方向相同的两个力,如果________不同,那么它们是不相等的.
2.向量方法在物理中的应用
(1)力、速度、加速度、位移都是________.
(2)力、速度、加速度、位移的合成与分解就是向量的________运算,运动的叠加亦用到向量的合成.
(3)动量mν是______________.
(4)功即是力F与所产生位移s的________.
一、选择题
1.用力F推动一物体水平运动s m,设F与水平面的夹角为θ,则对物体所做的功为(  )
A.|F|·s B.Fcos θ·s
C.Fsin θ·s D.|F|cos θ·s
2.两个大小相等的共点力F1,F2,当它们夹角为90°时,合力大小为20 N,则当它们的夹角为120°时,合力大小为(  )
A.40 N B.10 N C.20N D.10 N
3.共点力F1=(lg 2,lg 2),F2=(lg 5,lg 2)作用在物体M上,产生位移s=(2lg 5,1),则共点力对物体做的功W为(  )
A.lg 2 B.lg 5 C.1 D.2
4.一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态,已知F1,F2成90°角,且F1,F2的大小分别为2和4,则F3的大小为(  )
A.6 B.2 C.2 D.2
5.质点P在平面上作匀速直线运动,速度向量ν=(4,-3)(即点P的运动方向与ν相同,且每秒移动的距离为|ν|个单位).设开始时点P的坐标为(-10,10),则5秒后点P的坐标为(  )
A.(-2,4) B.(-30,25)
C.(10,-5) D.(5,-10)
6.已知作用在点A的三个力f1=(3,4),f2=(2,-5),f3=(3,1)且A(1,1),则合力f=f1+f2+f3的终点坐标为(  )
A.(9,1) B.(1,9) C.(9,0) D.(0,9)
题 号
1
2
3
4
5
6
答 案
二、填空题
7.若=(2,2),=(-2,3)分别表示F1,F2,则|F1+F2|为________.
8.一个重20 N的物体从倾斜角30°,斜面长1 m的光滑斜面顶端下滑到底端,则重力做的功是________.
9.在水流速度为4千米/小时的河流中,有一艘船沿与水流垂直的方向以8千米/小时的速度航行,则船实际航行的速度的大小为________.
10. 如图所示,小船被绳索拉向岸边,船在水中运动时设水的阻力大小不变,那么小船匀速靠岸过程中,下列说法中正确的是________(写出正确的所有序号).
①绳子的拉力不断增大;②绳子的拉力不断变小;③船的浮力不断变小;④船的浮力保持不变.
三、解答题
11. 如图所示,两根绳子把重1 kg的物体W吊在水平杆子AB上,∠ACW=150°,∠BCW=120°,求A和B处所受力的大小(绳子的重量忽略不计,g=10 N/kg).
12.已知两恒力F1=(3,4),F2=(6,-5),作用于同一质点,使之由点A(20,15)移动到点B(7,0).
(1)求F1,F2分别对质点所做的功;
(2)求F1,F2的合力F对质点所做的功.
能力提升
13. 如图所示,在细绳O处用水平力F2缓慢拉起所受重力为G的物体,绳子与铅垂方向的夹角为θ,绳子所受到的拉力为F1.
(1)求|F1|,|F2|随角θ的变化而变化的情况;
(2)当|F1|≤2|G|时,求角θ的取值范围.
14.已知e1=(1,0),e2=(0,1),今有动点P从P0(-1,2)开始,沿着与向量e1+e2相同的方向做匀速直线运动,速度为e1+e2;另一动点Q从Q0(-2,-1)开始,沿着与向量3e1+2e2相同的方向做匀速直线运动,速度为3e1+2e2,设P、Q在t=0 s时分别在P0、Q0处,问当⊥时所需的时间t为多少?
用向量理论讨论物理中相关问题的步骤
一般来说分为四步:(1)问题的转化,把物理问题转化成数学问题;(2)模型的建立,建立以向量为主体的数学模型;(3)参数的获取,求出数学模型的相关解;(4)问题的答案,回到物理现象中,用已经获取的数值去解释一些物理现象.
2.5.2 向量在物理中的应用举例
答案
知识梳理
1.(1)大小 方向 (2)始点 作用点 作用点
2.(1)向量 (2)加、减 (3)数乘向量 (4)数量积
作业设计
1.D
2.B [|F1|=|F2|=|F|cos 45°=10,
当θ= 120°,由平行四边形法则知:
|F合|=|F1|=|F2|=10 N.]
3.D [F1+F2=(1,2lg 2).
∴W=(F1+F2)·s=(1,2lg 2)·(2lg 5,1)=2lg 5+2lg 2=2.]
4.C [因为力F是一个向量,由向量加法的平行四边形法则知F3的大小等于以F1、F2为邻边的平行四边形的对角线的长,故|F3|2=|F1+F2|2=|F1|2+|F2|2=4+16=20,∴|F3|=2.]
5.C [设(-10,10)为A,设5秒后P点的坐标为A1(x,y),
则=(x+10,y-10),由题意有=5ν.
即(x+10,y-10)=(20,-15)??.]
6.A [f=f1+f2+f3=(3,4)+(2,-5)+(3,1)=(8,0),
设合力f的终点为P(x,y),则
=+f=(1,1)+(8,0)=(9,1).]
7.5 [∵F1+F2=(0,5),
∴|F1+F2|==5.]
8.10 J
解析 WG=G·s=|G|·|s|·cos 60°=20×1×=10 J.
9.4 km/h
解析 如图用v0表示水流速度,v1表示与水流垂直的方向的速度.
则v0+v1表示船实际航行速度,
∵|v0|=4,|v1|=8,
∴解直角三角形|v0+v1|==4.
10.①③
解析 设水的阻力为f,绳的拉力为F,F与水平方向夹角为θ(0<θ<).则|F|cos θ=|f|,∴|F|=.
∵θ增大,cos θ减小,∴|F|增大.
∵|F|sin θ增大,∴船的浮力减小.
11.解 
设A、B所受的力分别为f1、f2,
10 N的重力用f表示,则f1+f2=f,以重力的作用点C为f1、f2、f的始点,作右图,使=f1,=f2,=f,则∠ECG=180°-150°=30°,∠FCG=180°-120°=60°.
∴||=||·cos 30°=10×=5.
||=||·cos 60°=10×=5.
∴在A处受力为5 N,在B处受力为5 N.
12.解 (1)=(7,0)-(20,15)=(-13,-15),
W1=F1·=(3,4)·(-13,-15)=3×(-13)+4×(-15)=-99(J),
W2=F2·=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(J).
∴力F1,F2对质点所做的功分别为-99 J和-3 J.
(2)W=F·=(F1+F2)·
=[(3,4)+(6,-5)]·(-13,-15)
=(9,-1)·(-13,-15)
=9×(-13)+(-1)×(-15)
=-117+15=-102(J).
∴合力F对质点所做的功为-102 J.
13.解 
(1)由力的平衡及向量加法的平行四边形法则,得-G=F1+F2,|F1|=,|F2|=|G|tan θ,
当θ从0°趋向于90°时,|F1|,|F2|都逐渐增大.
(2)由|F1|=,|F1|≤2|G|,得cos θ≥.
又因为0°≤θ<90°,所以0°≤θ≤60°.
14.解 e1+e2=(1,1),|e1+e2|=,其单位向量为(,);3e1+2e2=(3,2),|3e1+2e2|=,其单位向量为(,),如图.
依题意,||=t,||=t,
∴=||(,)=(t,t),=||(,)=(3t,2t),
由P0(-1,2),Q0(-2,-1),得P(t-1,t+2),Q(3t-2,2t-1),
∴=(-1,-3),=(2t-1,t-3),
由于⊥,∴·=0,即2t-1+3t-9=0,解得t=2.
∴当⊥时所需的时间为2 s.
2.5.2向量在物理中的应用举例
教学目的:
1.通过力的合成与分解模型、速度的合成与分解模型,掌握利用向量方法研究物理中相关问题
的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识;
2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力,体会
数学在现实生活中的作用.
教学重点:运用向量的有关知识对物理中的力的作用、速度分解进行相关分析来计算.
教学难点:将物理中有关矢量的问题转化为数学中向量的问题.
教学过程:
一、复习引入:
1. 讲解《习案》作业二十五的第4题.
2. 你能掌握物理中的哪些矢量?向量运算的三角形法则与四边形法则是什么?
二、讲解新课:
例1. 在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力. 你能从数学的角度解释这种形象吗?
探究1:
(1)(为何值时,||最小,最小值是多少?
(2)| |能等于||吗?为什么?
探究2:
你能总结用向量解决物理问题的一般步骤吗?
(1)问题的转化:把物理问题转化为数学问题;
(2)模型的建立:建立以向量为主体的数学模型;
(3)参数的获得:求出数学模型的有关解——理论参数值;
(4)问题的答案:回到问题的初始状态, 解决相关物理现象.
例2. 如图,一条河的两岸平行,河的宽度d=500 m,一艘船从A处出发到河对岸.已知船的速度||=10 km/h,水流速度||=2 km/h,问行驶航程最短时,所用时间是多少(精确到0.1 min)?
思考:
1. “行驶最短航程”是什么意思?
2. 怎样才能使航程最短?

三、课堂小结
向量解决物理问题的一般步骤:
(1)问题的转化:把物理问题转化为数学问题;
(2)模型的建立:建立以向量为主体的数学模型;
(3)参数的获得:求出数学模型的有关解——理论参数值;
(4)问题的答案:回到问题的初始状态, 解决相关物理现象.
四、课后作业
1. 阅读教材P.111到P.112; 2. 《习案》作业二十六.
课件17张PPT。2.5.2向量在物理
中的应用举例《习案》作业二十五的第4题.复习引入复习引入 你能掌握物理中的哪些矢量?
向量运算的三角形法则与四边形
法则是什么?例1. 在日常生活中,你是否有这样的经
验:两个人共提一个旅行包,夹角越大
越费力;在单杠上做引体向上运动,两
臂的夹角越小越省力. 你能从数学的角
度解释这种形象吗?讲解范例:例1. 在日常生活中,你是否有这样的经
验:两个人共提一个旅行包,夹角越大
越费力;在单杠上做引体向上运动,两
臂的夹角越小越省力. 你能从数学的角
度解释这种形象吗?探究1:(1)?为何值时,|F1|最小,最小值是多少?讲解范例:例1. 在日常生活中,你是否有这样的经
验:两个人共提一个旅行包,夹角越大
越费力;在单杠上做引体向上运动,两
臂的夹角越小越省力. 你能从数学的角
度解释这种形象吗?探究1:(1)?为何值时,|F1|最小,最小值是多少?(2)|F1|能等于|G|吗?为什么?讲解范例: 你能总结用向量解决物理问题的一
般步骤吗?探究2: 你能总结用向量解决物理问题的一
般步骤吗?探究2:(1)问题的转化:把物理问题转化为数学
问题; 你能总结用向量解决物理问题的一
般步骤吗?探究2:(1)问题的转化:把物理问题转化为数学
问题;(2)模型的建立:建立以向量为主体的数
学模型; 你能总结用向量解决物理问题的一
般步骤吗?探究2:(1)问题的转化:把物理问题转化为数学
问题;(2)模型的建立:建立以向量为主体的数
学模型;(3)参数的获得:求出数学模型的有关解
——理论参数值; 你能总结用向量解决物理问题的一
般步骤吗?探究2:(1)问题的转化:把物理问题转化为数学
问题;(2)模型的建立:建立以向量为主体的数
学模型;(3)参数的获得:求出数学模型的有关解
——理论参数值;(4)问题的答案:回到问题的初始状态,
解决相关物理现象.例2. 如图,一条河的两岸平行,河的宽度
d=500 m,一艘船从A处出发到河对岸.
已知船的速度|v1|=10 km/h,水流速度
|v2|=2 km/h,问行驶航程最短时,所用
时间是多少(精确到0.1 min)?讲解范例:ACDB思考:1. “行驶最短航程”是什么意思?2. 怎样才能使航程最短?例3. 讲解范例:课堂小结两角差的余弦公式:两角差的余弦公式,
首先要认识公式结构的特征,了解
公式的推导过程,熟知由此衍变的两角
和的余弦公式.在解题过程中注意角?、
?的象限,也就是符号问题,学会灵活
运用.课堂小结向量解决物理问题的一般步骤:(1)问题的转化:把物理问题转化为数学
问题;(2)模型的建立:建立以向量为主体的数
学模型;(3)参数的获得:求出数学模型的有关解
——理论参数值;(4)问题的答案:回到问题的初始状态,
解决有相关物理现象. 阅读教材P.111到P.112;
2. 《习案》作业二十六.课后作业2.5《平面向量应用举例》导学案
【学习目标】
1.运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析
几何中直线或线段的平行、垂直、相等、夹角和距离等问题.
2.运用向量的有关知识解决简单的物理问题.
【学法指导】
预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。 [来源:Zxxk.Com]
【知识链接】
阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:
例1如果不用向量的方法,还有其他证明方法吗?
利用向量方法解决平面几何问题的“三步曲”是什么?
例3中,⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
【学习过程】
探究一:(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?
(2)举出几个具有线性运算的几何实例.
例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.
已知:平行四边形ABCD.
求证:.
试用几何方法解决这个问题
利用向量的方法解决平面几何问题的“三步曲”?
建立平面几何与向量的联系,
通过向量运算,研究几何元素之间的关系,
把运算结果“翻译”成几何关系。
变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设
(1)证明A、O、E三点共线;
(2)用表示向量。
例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的
中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
探究二:两个人提一个旅行包,夹角越大越费力.在单杠上做引体向上运动,两臂夹角越小越省力. 这些力的问题是怎么回事?
例3.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?

请同学们结合刚才这个问题,思考下面的问题:
⑴为何值时,|F1|最小,最小值是多少?[来源:学科网]
⑵|F1|能等于|G|吗?为什么?
例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸.已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?
[来源:学。科。网]
变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为
,(1)写出此时粒子B相对粒子A的位移s; (2)计算s在方向上的投影。
【学习反思】
结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题
代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。
本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。
【基础达标】
1.已知,求边长c。
2.在平行四边形ABCD中,已知AD=1,AB=2,对角线BD=2,求对角线AC的长。
3.在平面上的三个力作用于一点且处于平衡状态,的夹角为,求:(1)的大小;(2)与夹角的大小。
【拓展提升】
一、选择题
1.给出下面四个结论:
若线段AC=AB+BC,则向量;
若向量,则线段AC=AB+BC;
若向量与共线,则线段AC=AB+BC;
若向量与反向共线,则.
其中正确的结论有 ( )
A. 0个 B.1个 C.2个 D.3个
2.河水的流速为2,一艘小船想以垂直于河岸方向10的速度驶向对岸,则小
船的静止速度大小为 ( )
A.10 B. C. D.12
3.在中,若=0,则为 ( )
A.正三角形 B.直角三角形 C.等腰三角形 D.无法确定
二、填空题
4.已知两边的向量,则BC边上的中线向量用、表示为
5.已知,则、、两两夹角是