课件15张PPT。人教版高二数学必修2直线与平面平行的判定2.2.1 直线、平面平行的判定第二章 点、直线、平面之间的位置关系 直线与平面有几种位置关系?复习引入 其中平行是一种非常重要的关系,不仅应用较多,而且是学习平面和平面平行的基础. 有三种位置关系:在平面内,相交、平行.问题 怎样判定直线与平面平行呢?问题 根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点.但是,直线无限延长,平面无限延展,如何保证直线与平面没有公共点呢? 在生活中,注意到门扇的两边是平行的.当门扇绕着一边转动时,另一边始终与门框所在的平面没有公共点,此时门扇转动的一边与门框所在的平面给人以平行的印象.问题实例感受 门扇转动的一边与门框所在的平面之间的位置关系.问题观察 将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系? 下图中的直线 a 与平面α平行吗?观察直线与平面平行观察(1)这两条直线共面吗?探究共面不可能相交 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 证明直线与平面平行,三个条件必须具备,才能得到线面平行的结论.直线与平面平行判定定理符号语言图形语言 (1)定义法:证明直线与平面无公共点; (2)判定定理:证明平面外直线与平面内直线平行. 怎样判定直线与平面平行? 例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面. 已知:空间四边形ABCD中,E,F分别AB,AD的中点.求证:EF//平面BCD.证明:连接BD.因为, E,F分别AB,AD的中点
所以 EF//BD(三角形中位线的性质)典型例题 1.如图,长方体 中, (1)与AB平行的平面是 ;(2)与 平行的平面是 ;(3)与AD平行的平面是 ;随堂练习作业P56 2