课件22张PPT。问题1
(1)从甲、乙、丙三名同学中选出两名参加一项活动,有多少种选法?
(2)从甲、乙、丙三名同学中选出两名参加一项活动,共中1名同学参加上午的活动,另1名参加下午的活动,有多少种选法?问题2
(1)从1,2,3,4中任意选出3个不同的数组成一个集合,这样的集合有多少个?
(2)从1,2,3,4中任意选出3个组成一个三位数,共可得到多少个三位数? 排列:一般的,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列, 叫做从n个不同元素中取出m个元素的一个排列。排列问题实际包含两个过程:(1)先从n个不同元素中取出m个不同的元素。(2)再把这m个不同元素按照一定的顺序排成一列。1.排列的概念注意:1、元素不能重复。n个中不能重复,m个中也不能重复。2、“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。3、两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。4、m<n时的排列叫选排列,m=n时的排列叫全排列。5、为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图”。例1.下列问题中哪些是排列问题?(1)10名学生中抽2名学生开会(2)10名学生中选2名做正、副组长(3)从2,3,5,7,11中任取两个数相乘(4)从2,3,5,7,11中任取两个数相除(5)20位同学互通一次电话(6)20位同学互通一封信(7)以圆上的10个点为端点作弦(8)以圆上的10个点中的某一点为起点,作过另一个点的射线www.jkzyw.com哪些是全排列?√√√√2、排列数:“排列”和“排列数”有什么区别和联系?排列数,而不表示具体的排列。所有排列的个数,是一个数;“排列数”是指从个不同元素中,任取个元素的问题1中是求从3个不同元素中取出2个元素的排列数,记为 ,问题2中是求从4个不同元素中取出3个元素的排列数,记为 ,已经算出(1)第一个因数是n,后面每一个因数比它前面一个因数少1.
(2)最后一个因数是n-m+1.
(3)共有m个因数.观察排列数公式有何特征:排列数公式 就是说,n个不同元素全部取出的排列数,等于正整数1到n的连乘积,
正整数1到n的连乘积,叫做n的阶乘,用n!表示,
所以n个不同元素的全排列数公式可以写成 n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,这时公式中的m=n,即有另外,我们规定 0!=1全排列说明:排列数公式的第一个常用来计算,第二个常用来证明。3.例题讲解利用排列数公式求值或化简1.求值2.解方程(1)x=3 (2) x=61、排列数公式的第一个常用来计算,第二个常用来证明。答案:C课堂练习小结:【排列】从n个不同元素中选出m(m≤n)个元素,并按一定的顺序排成一列.
【关键点】1、互异性(被选、所选元素互不相同)
2、有序性(所选元素有先后位置等顺序之分)
【排列数】所有排列总数作业:教材P27A组1、3课件27张PPT。作业:教材P27A组2、9