人教版高中数学选修1-1教学资料,补习资料:2.1.2《 椭圆的几何性质》6份

文档属性

名称 人教版高中数学选修1-1教学资料,补习资料:2.1.2《 椭圆的几何性质》6份
格式 zip
文件大小 5.5MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-09-05 21:37:46

文档简介

课件17张PPT。2.1.2《 椭圆的几何性质》教学目标 知识与技能目标
了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.过程与方法目标
(1)复习与引入过程
引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗§2.1.2椭圆的简单几何性质.复习:1.椭圆的定义:到两定点F1、F2的距离之和为常数(大于|F1F2 |)的动点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:a2=b2+c2当焦点在X轴上时当焦点在Y轴上时1、范围:

-a≤x≤a, -b≤y≤b 知

椭圆落在x=±a,y= ± b组成的矩形中椭圆的对称性2、对称性:从图形上看,椭圆关于x轴、y轴、原点对称。
从方程上看:
(1)把x换成-x方程不变,图象关于y轴对称;
(2)把y换成-y方程不变,图象关于x轴对称;
(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。3、椭圆的顶点令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点?*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。
a、b分别叫做椭圆的长半轴长和短半轴长。根据前面所学有关知识画出下列图形(1)(2)A1 B1 A2 B2 B2 A2 B1 A1 4、椭圆的离心率离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:[2]离心率对椭圆形状的影响:02)e 越接近 0,c 就越接近 0,从而 b就越大,椭圆就越圆[3]e与a,b的关系:|x|≤ a,|y|≤ b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b. a>ba2=b2+c2|x|≤ a,|y|≤ b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b. a>ba2=b2+c2|x|≤ b,|y|≤ a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0 , c)、(0, -c)同前同前同前例1已知椭圆方程为16x2+25y2=400, 它的长轴长是: 。短轴长是: 。
焦距是: 。 离心率等于: 。
焦点坐标是: 。顶点坐标是: 。
外切矩形的面积等于: 。 1086802、确定焦点的位置和长轴的位置已知椭圆方程为6x2+y2=6它的长轴长是: 。短轴长是: 。
焦距是: .离心率等于: 。
焦点坐标是: 。顶点坐标是: 。
外切矩形的面积等于: 。 2练习1.例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。分类讨论的数学思想小结:本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。 2. 1.2椭圆的简单几何性质
一、预习目标
① 了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.
② 掌握椭圆的定义、几何图形、标准方程及简单性质.
二 预习内容
1.椭圆的定义
(1) 平面内与两定点F1,F2的距离的和等于常数(大于)的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.
注:①当2a=|F1F2|时,P点的轨迹是 .
②当2a<|F1F2|时,P点的轨迹不存在.
2.椭圆的标准方程
(1) 焦点在轴上,中心在原点的椭圆标准方程是:,其中( > >0,且 )
(2) 焦点在轴上,中心在原点的椭圆标准方程是,其中a,b满足: .
3.椭圆的几何性质(对,a > b >0进行讨论)
(1) 范围: ≤ x ≤ , ≤ y ≤
(2) 对称性:对称轴方程为 ;对称中心为 .
(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;
(4) 离心率: ( 与 的比), ,越接近1,椭圆越 ;越接近0,椭圆越接近于 .
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
1.熟悉椭圆的几何性质(对称性、范围、顶点、离心率);
2.掌握标准方程中的几何意义,以及的相互关系,能说明离心率的大小对椭圆形状的影响.
3.理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法
重点:椭圆的几何性质
难点:如何贯彻数形结合思想,运用曲线方程研究几何性质
二、学习过程
1.回答下列问题;
(1)椭圆曲线的几何意义是什么??
(2)“范围”是方程中变量的取值范围,是曲线所在的位置的范围,椭圆的标准方程中的取值范围是什么?其图形位置是怎样的?
(3)标准形式的方程所表示的椭圆,其对称性是怎样的?
?
(4)椭圆的顶点是怎样的点?椭圆的长轴与短轴是怎样定义的?长轴长、短轴长各是多少?的几何意义各是什么?
?
(5)椭圆的离心率是怎样定义的?用什么来表示?它的范围如何?在这个范围内,它的变化对椭圆有什么影响?
?
(6)画椭圆草图的方法是怎样的?
2.完成下列表格:
方程
图像
a、b、c
?
焦点
范围
对称性
顶点
长、短轴长
离心率
3.例题
例1.求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标。
例6如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程.
分析:若设点,则,到直线:的距离,则容易得点的轨迹方程.
三、反思总结
1.记住椭圆的几何性质(注意焦点所在的轴)
2.会求动点的轨迹方程。
四、当堂检测
1、椭圆的长轴长、短轴长、离心率依次是( )
A、5、3、0、8 B、10、6、0、8
C、5、3、0、6 D、10、6、0、6
2、椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )
A、 B、 C、 D、
3、若椭圆经过原点,且焦点为F1(1,0)、F2(3,0),则其离心率为( )
A、 B、 C、 D、
4、已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若⊿ABF2是正三角形,则这个椭圆的离心率是( )
A、 B、 C、 D、
5已知点(3,2)在椭圆上,则( )
A、点(-3,-2)不在椭圆上
B、点(3,-2)不在椭圆上
C、点(3,-2)在椭圆上
D、无法判断点(-3,-2)、(3,-2)、(3,-2)是否在椭圆上
6、设椭圆的短轴为B1B2,F1为椭圆的左焦点,则∠B1F1B2等于( )
A、 B、 C、 D、
课后练习与提高
1.设a、b、c、P分别是椭圆的半长轴长、半短轴长、半焦距及焦点到对应准线的距离,则它们的关系是( )
  A. B. C. D.
  2.椭圆的准线平行于x轴,则m的取值范围是( )
  A. B. C.(1,+∞) D.
  3.以椭圆两焦点为直径端点的圆交椭圆于四个不同点,这四个顶点和两个焦点恰好构成一个边长为2的正六边形,则关于此椭圆有( )
  A.长轴长为 B.短轴长为
  C.离心率为 D.焦点相应准线的距离为
  4.已知椭圆的三个顶点为,,A(a,0),焦点F(c,0)且,则离心率e=________________________________。
  5.椭圆上一点P到左准线的距离为2.5,则P到右焦点的距离是_____________________。
  6.若椭圆的离心率为,则k=__________________________________。
  7.在椭圆上求一点P,使。
2.1.2椭圆的简单几何性质
教学目标:
(1)通过对椭圆标准方程的讨论,使学生掌握椭圆的几何性质,并正确地画出它的图形;领会每一个几何性质的内涵,并学会运用它们解决一些简单问题。
(2)培养学生观察、分析、抽象、概括的逻辑思维能力;运用数形结合思想解决实际问题的能力。
教学重点:椭圆的简单几何性质及其探究过程。
教学难点:利用曲线方程研究曲线几何性质的基本方法和离心率是用来刻画椭的扁平程度的给出过程
教学过程:
一、复习引入:
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹
2.标准方程:, ()
二、新课讲解:
1.范围:
由标准方程知,椭圆上点的坐标满足不等式,
∴,,∴,,
说明椭圆位于直线,所围成的矩形里.
2.对称性:
在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。若同时以代替,代替方程也不变,则曲线关于原点对称.
所以,椭圆关于轴、轴和原点对称.这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心.
3.顶点:
确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标.
在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。同理令得,即,是椭圆与轴的两个交点.
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点.
同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长.
由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,,,且,即.
4.离心率:
椭圆的焦距与长轴的比叫椭圆的离心率.
∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。
当且仅当时,,两焦点重合,图形变为圆,方程为.
5.填写下列表格:
方程
图像
a、b、c
?
焦点

范围
?
对称性
椭圆关于y轴、x轴和原点都对称
顶点



长、短轴长
长轴: A1A2 长轴长 短轴:B1B2短轴长
离心率
例1.求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.
解:把已知方程化为标准方程,,,
∴,
∴椭圆长轴和短轴长分别为和,离心率,
焦点坐标,,顶点,,,.
例2.过适合下列条件的椭圆的标准方程:
(1)经过点、;
(2)长轴长等于,离心率等于.
解:(1)由题意,,,又∵长轴在轴上,
所以,椭圆的标准方程为.
(2)由已知,,
∴,,∴,
所以,椭圆的标准方程为或.
例3.如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程.
分析:若设点,则,到直线:的距离,则容易得点的轨迹方程.
作业:P47第4、5题
课件72张PPT。2.1.2 椭圆的简单几何性质 课件25张PPT。椭圆的几何性质一. 教材分析 (1) 教材的地位和作用
(2) 课时安排
一. 教材分析 “椭圆的几何性质”是解析几何研究的一个重要问题之一。它是学生学习圆锥曲线所研究的第一个有关性质的内容,其方法可贯穿于解析几何学习的始终。所以,通过这部分内容的学习,可以帮助学生更好的理解解析几何的核心问题------圆锥曲线的概念,也能为学好后续几种圆锥曲线作好理论和方法上的准备,是解析几何中承上启下的关键内容。 (一)教材的地位和作用一. 教材分析(二)课时安排二. 教法分析(一)学情分析
(二)教学方法
(三)具体措施
二. 教法分析(一)学情分析 学生已经学习了椭圆的知识和概念,掌握了椭圆的一些常见的知识和求法。同时,学生已经具备一定的自学能力,多数同学对数学的学习有相当的兴趣和积极性。但在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强。 二. 教法分析(二)教学方法 建构主义认为,知识是在原有知识的基础上,在人与环境的相互作用过程中,通过同化和顺应,使自身的认知结构得以转换和发展。元认知理论指出,学习过程既是认识过程又是情感过程,是“知、情、意、行”的和谐统一。结合本节课的具体内容,参考学习和信息加工模型、广义知识学习阶段和分类模型,确立教学法。
二. 教法分析(三)具体措施 根据以上的分析,本节课宜采用讲解讨论相结合,交流练习互穿插的活动课形式,以学生为主体,教师创设和谐、愉悦的环境及辅以适当的引导。同时,利用多媒体形象动态的演示功能提高教学的直观性和趣味性,以提高课堂效益。
三. 教学目标知识目标:掌握椭圆的几何性质,掌握求椭圆性质的一般方法与步骤。
能力目标:培养分析、抽象、概括等思维能力;加强数形结合、化归转化等数学思想的培养。
情感目标:培养合作交流、独立思考等良好的个性品质;以及勇于批判、敢于创新的科学精神。
教学重点:椭圆性质的研究基本方法与步骤 。
教学难点:椭圆性质的合理应用。
复习:1.椭圆的定义:到两定点F1、F2的距离和为常数(大于|F1F2 |)的点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:a2=b2+c2开始新课椭圆的几何性质一、椭圆的范围由即说明:椭圆位于矩形之中。二、椭圆的对称性在之中,把---换成---,方程不变,说明:
椭圆关于---轴对称;
椭圆关于---轴对称;
椭圆关于---点对称;
故,坐标轴是椭圆的对称轴,原点是椭圆的对称中心中心:椭圆的对称中心叫做椭圆的中心三、椭圆的顶点在中,令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点?*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。
a、b分别叫做椭圆的长半轴长和短半轴长。四、椭圆的离心率离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:
因为 a > c > 0,所以1 >e >0[2]离心率对椭圆形状的影响:
1)e 越接近 1,c 就越接近 a,从而 b就越小(?),椭圆就越扁(?)
2)e 越接近 0,c 就越接近 0,从而 b就越大(?),椭圆就越圆(?)
3)特例:e =0,则 a = b,则 c=0,两个焦点重合,椭圆方程变为(?)[1]椭圆标准方程所表示的椭圆的存在范围是什么?[2]上述方程表示的椭圆有几个对称轴?几个对称中心?[3]椭圆有几个顶点?顶点是谁与谁的交点?[4]对称轴与长轴、短轴是什么关系?[5]2a 和 2b是什么量? a和 b是什么量?[6]关于离心率讲了几点?|x|≤ a,|y|≤ b|x|≤ b,|y|≤ a关于x轴、y轴成轴对称;关于原点成中心对称。( a ,0 ),(0, b)( b ,0 ),(0, a)( c,0)(0, c)长半轴长为a,短半轴长为b.焦距为2c;a2=b2+c2例1已知椭圆方程为16x2+25y2=400, 它的长轴长是: 。短轴长是: 。
焦距是: 。 离心率等于: 。
焦点坐标是: 。顶点坐标是: 。
外切矩形的面积等于: 。 108680练习.已知椭圆方程为6x2+y2=6它的长轴长是: 。短轴长是: 。
焦距是: 。 离心率等于: 。
焦点坐标是: 。顶点坐标是: 。
外切矩形的面积等于: 。 例2.已知椭圆中心在原点,对称轴为坐标轴,一个焦点在y,长轴是短轴的2倍,焦距为2,离心率为 √3/2,且过(2,-6)求椭圆的方程。小练习:已知椭圆的方程为x2+a2y2=a(a>0且a 1)它的长轴长是: ;
短轴长是: ;
焦距是: ;
离心率等于: ;
焦点坐标是: ;
顶点坐标是: ;
外切矩形的面积等于: ; 当a>1时:







当0班级 ________ 姓名 ___________
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
设定点,,动点满足条件>,
则动点的轨迹是 ( )
A. 椭圆 B. 线段 C. 椭圆或线段或不存在 D. 不存在
2. 已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆方程为
A. 或 B. ( )
C. 或 D. 或
过椭圆的一个焦点的直线与椭圆交于、两点,则、
与椭圆的另一焦点构成,那么的周长是
A. B. 2 C. D. 1 ( )
若椭圆的短轴为,它的一个焦点为,则满足为等边三角形的椭
圆的离心率是 A. B. C. D. ( )
若椭圆上有一点,它到左准线的距离为,那么点到右焦
点的距离与到左焦点的距离之比是 ( )
A. 4∶1 B. 9∶1 C. 12∶1 D. 5∶1
6. ,方程表示焦点在轴上的椭圆,则的取
值范围是 A. B. C. D. ( )

7. 参数方程 (为参数)表示的曲线是 ( )
A. 以为焦点的椭圆 B. 以为焦点的椭圆
C. 离心率为的椭圆 D. 离心率为的椭圆
8. 已知<4,则曲线和有 ( )
A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴
9. 点在椭圆的内部,则的取值范围是 ( )
A. << B. <或>
C. << D. <<
10. 若点在椭圆上,、分别是椭圆的两焦点,且,
则的面积是 A. 2 B. 1 C. D. ( )
11. 椭圆的一个焦点为,点在椭圆上。如果线段的中点
在轴上,那么点的纵坐标是 ( )
A. B. C. D.
12. 椭圆内有两点,,为椭圆上一点,若使
最小,则最小值为 A. B. C. 4 D. ( )
二、填空题:本大题共4小题,每小题4分,共16分。
13. 已知椭圆的离心率为,则此椭圆的长轴长为 。
14. 是椭圆上的点,则到直线:的距离的最小
值为 。
15. 若点是椭圆上的点,则它到左焦点的距离为 。
16. 直线与椭圆相交于不同的两点、,若的中
点横坐标为2,则直线的斜率等于 。
三、解答题:本大题共6小题,满分74分。
17. (12分)已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程。
18. (12分)已知点和圆:,点在圆上运动,点在半径上,且,求动点的轨迹方程。
19. (12分)已知、是椭圆的两个焦点,在椭圆
上,,且当时,面积最大,求椭圆的方程。

20. (12分)点位于椭圆内,过点的直线与椭圆交于两点、
,且点为线段的中点,求直线的方程及的值。
21. (12分)已知椭圆,能否在轴左侧的椭圆上找到一点,使
点到左准线的距离为点到两焦点的距离的等比中项?若存在,求
出它的坐标,若不存在,请说明理由。

22. (14分)椭圆>>与直线交于、两点,且
,其中为坐标原点。
(1)求的值;
(2)若椭圆的离心率满足≤≤,求椭圆长轴的取值范围。
参考答案
选择题:
CCADA DABAB CD
填空题
13. 4 或 4 14. 15. 16.
解答题
17. 或
18. 利用定义法 ∴
19. = 3|y P|≤ 3b ∴
20. 点差法或联立方程组法
AB:x + 2y -3 = 0 | AB | =
21. 设 M ( x o , y o ) ( -2≤ xo<0 )
利用 这与-2≤ xo<0 不合
∴ 不存在点M满足题意
22. (1) 利用联立方程组法 注:OP ⊥ OQ x 1 x 2 + y 1 y 2 = 0

(2) 长轴 2a ∈ []
练习:椭圆内有两点,,为椭圆上一点,若使
最小,求此最小值。
B为右焦点,F为左焦点,则 |PA| + |PB| = |PA| + 2a-|PF| = 10 + |PA|-|PF|
≥ 10-| AF | = 10 -

2.2椭圆的简单几何性质
教学目标:[来源:学。科。网]
(1)通过对椭圆标准方程的讨论,理解并掌握椭圆的几何性质;
(2)能够根据椭圆的标准方程求焦点、顶点坐标、离心率并能根据其性质画图;
(3)培养学生分析问题、解决问题的能力,并为学习其它圆锥曲线作方法上的准备.
教学重点:椭圆的几何性质. 通过几何性质求椭圆方程并画图
教学难点:椭圆离心率的概念的理解.
教学方法:讲授法
课型:新授课
教学工具:多媒体设备[来源:Zxxk.Com]
一、复习:
1.椭圆的定义,椭圆的焦点坐标,焦距.
2.椭圆的标准方程.
二、讲授新课:
(一)通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.[来源
[在解析几何里,是利用曲线的方程来研究曲线的几何性质的,我们现在利用焦点在x轴上的椭圆的标准方程来研究其几何性质.][来源:Z,xx,k.Com]
已知椭圆的标准方程为:
1.范围
[我们要研究椭圆在直角坐标系中的范围,就是研究椭圆在哪个区域里,只要讨论方程中x,y的范围就知道了.]
问题1 方程中x、y的取值范围是什么?
由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式
≤1, ≤1
即 x2≤a2, y2≤b2
所以 |x|≤a, |y|≤b
即 -a≤x≤a, -b≤y≤b
这说明椭圆位于直线x=±a, y=±b所围成的矩形里。
2.对称性
复习关于x轴,y轴,原点对称的点的坐标之间的关系:[来源:Zxxk.Com]
点(x,y)关于x轴对称的点的坐标为(x,-y);
点(x,y)关于y轴对称的点的坐标为(-x, y);
点(x,y)关于原点对称的点的坐标为(-x,-y);
问题2 在椭圆的标准方程中①以-y代y②以-x代x③同时以-x代x、以-y代y,你有什么发现?
在曲线的方程里,如果以-y代y方程不变,那么当点P(x,y)在曲线上时,它关于x的轴对称点P’(x,-y)也在曲线上,所以曲线关于x轴对称。
如果以-x代x方程方程不变,那么说明曲线的对称性怎样呢?[曲线关于y轴对称。]
如果同时以-x代x、以-y代y,方程不变,这时曲线又关于什么对称呢?[曲线关于原点对称。]
归纳提问:从上面三种情况看出,椭圆具有怎样的对称性?
椭圆关于x轴,y轴和原点都是对称的。
这时,椭圆的对称轴是什么?[坐标轴]
椭圆的对称中心是什么?[原点]
椭圆的对称中心叫做椭圆的中心。[来源:Z。xx。k.Com]
3.顶点
[研究曲线的上的某些特殊点的位置,可以确定曲线的位置。要确定曲线在坐标系中的位置,常常需要求出曲线与x轴,y轴的交点坐标.]
问题3 怎样求曲线与x轴、y轴的交点?
在椭圆的标准方程里,
令x=0,得y=±b。这说明了B1(0,-b),B2(0,b)是椭圆与y轴的两个交点。
令y=0,得x=±a。这说明了A1(-a,0),A2(a,0)是椭圆与x轴的两个交点。
因为x轴,y轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点,这四个交点叫做椭圆的顶点。
线段A1A2,B1B2分别叫做椭圆的长轴和短轴。
它们的长|A1A2|=2a,|B1B2|=2b (a和b分别叫做椭圆的长半轴长和短半轴长)
观察图形,由椭圆的对称性可知,椭圆短轴的端点到两个焦点的距离相等,且等于长半轴长,即     |B1F1|=|B1F2|=|B2F1|=|B2F2|= a
在Rt△OB2F2中,由勾股定理有[来源:Zxxk.Com]
|OF2|2=|B2F2|2-|OB2|2 ,即c2=a2-b2
这就是在前面一节里,我们令a2-c2=b2的几何意义。
4.离心率
定义:椭圆的焦距与长轴长的比e=,叫做椭圆的离心率。
因为a>c>0,所以0问题4 观察图形,说明当离心率e变化时,椭圆形状是怎样随之变化的?
[调用几何画板,演示离心率变化(分越接近1和越接近0两种情况讨论)对椭圆形状的影响]
得出结论:(1)e越接近1时,则c越接近a,从而b越小,因此椭圆越扁;
(2)e越接近0时,则c越接近0,从而b越接近于a,这时椭圆就越接近于圆。
当且仅当a=b时,c=0,这时两个焦点重合于椭圆的中心,图形变成圆。
当e=1时,图形变成了一条线段。[为什么?留给学生课后思考]
5.例题
例1求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.
[根据刚刚学过的椭圆的几何性质知,椭圆长轴长2a,短轴长2b,该方程中的a=?b=?c=?因为题目给出的椭圆方程不是标准方程,所以必须先把它转化为标准方程,再讨论它的几何性质]
解:把已知方程化为标准方程, 这里a=5,b=4,所以c==3
因此,椭圆的长轴和短轴长分别是2a=10,2b=8
离心率e==
两个焦点分别是F1(-3,0),F2(3,0),
四个顶点分别是A1(-5,0) A1(5,0) A1(0,-4) F1(0,4).
[提问:怎样用描点法画出椭圆的图形呢?我们可以根据椭圆的对称性,先画出第一象限内的图形。]
将已知方程变形为 ,根据
在0≤x≤5的范围内算出几个点的坐标(x,y)
x
0
1
2
3
4
5
y
4
3.9
3.7
3.2
2.4
0
先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆(如图)
说明:本题在画图时,利用了椭圆的对称性。利用图形的几何性质,可以简化画图过程,保证图形的准确性。
根据椭圆的几何性质,用下面的方法可以快捷地画出反映椭圆基本形状和大小的草图:
以椭圆的长轴、短轴为邻边画矩形;
由矩形四边的中点确定椭圆的四个顶点;
用平滑的曲线将四个顶点连成一个椭圆。
[画图时要注意它们的对称性及顶点附近的平滑性]
(四)练习
填空:已知椭圆的方程是9x2+25y2=225,
将其化为标准方程是_________________.
a=___,b=___,c=___.[来源:学#科#网Z#X#X#K]
椭圆位于直线________和________所围成的________区域里.
椭圆的长轴、短轴长分别是____和____,离心率e=_____,两个焦点分别是_______、______,四个顶点分别是______、______、______、_______.
例2、求符合下列条件的椭圆的标准方程:
(1)经过点(-3,0)、(0,-2);
(2)长轴的长等于20,离心率等于0.6
例3 点与定点的距离和它到直线的距离之比是常数,求点的轨迹.
(教师分析——示范书写)
例4、如图,一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面) 的一部分。过对称轴的截口ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上,由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2。已知AC(F1F2,|F1A|=2.8cm,|F1F2|=4.5cm,求截口ABC所在椭圆的方程。
三、课堂练习:
①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?
⑴与 ⑵与(学生口答,并说明原因)
②求适合下列条件的椭圆的标准方程.
⑴经过点
⑵长轴长是短轴长的倍,且经过点
⑶焦距是,离心率等于
(学生演板,教师点评)
焦点在x轴、y轴上的椭圆的几何性质对比.

四、小结
(1)理解椭圆的简单几何性质,给出方程会求椭圆的焦点、顶点和离心率;
(2)了解离心率变化对椭圆形状的影响;
(3)通过曲线的方程研究曲线的几何性质并画图是解析几何的基本方法.
五、布置作业
课本习题2.1 的6、7、8题
课后思考:
1、椭圆上到焦点和中心距离最大和最小的点在什么地方?
2、点M(x,y)与定点F(c,0)的距离和它到定直线l:x= 的距离的比是常数 (a>c>0),求点M轨迹,并判断曲线的形状。
3、接本学案例3,问题2,若过焦点F2作直线与AB垂直且与该椭圆相交于M、N两点,当△F1MN的面积为70时,求该椭圆的方程。
[来源:Z。xx。k.Com]