本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.
教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.
1.教学重点:n次方根概念及性质、根式与分数指数幂的互化与有理指数幂的运算性质.
2.教学难点:根式概念、n次方根的性质、分数指数幂概念的理解及有理指数幂的运算.
复习引入
什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
归纳:在初中的时候我们已经知道:若,则叫做a的平方根.同理,若,则叫做a的立方根.
根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零.
(二)形成概念
零的n次方根为零,记为
举例:16的次方根为,
等等,而的4次方根不存在.
小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.
根据n次方根的意义,可得:
肯定成立,表示an的n次方根,等式一定成立吗?如果不一定成立,那么等于什么?
让学生注意讨论,n为奇偶数和a的符号,充分让学生分组讨论.
通过探究得到:n为奇数,
n为偶数, [
如
小结:当n为偶数时,化简得到结果先取绝对值,再在绝对值算具体的值,这样就避免出现错误.
例1:求下列各式的值
【分析】:当n为偶数时,应先写,然后再去绝对值.
2.观察以下式子,并总结出规律:>0
①
②
③
④
小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).
根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:
即:义为:
正数的定负分数指数幂的意义与负整数幂的意义相同.
即:
规定:0的正分数指数幂等于0,0的负分数指数幂无意义.
说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是
由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:
若>0,P是一个无理数,则P该如何理解?为了解决这个问题,引导学生先阅读课本P57——P58.
即:的不足近似值,从由小于的方向逼近,的过剩近似值从大于的方向逼近.
所以,当不足近似值从小于的方向逼近时,的近似值从小于的方向逼近.
当的过剩似值从大于的方向逼近时,的近似值从大于的方向逼近,(如课本图所示)
所以,是一个确定的实数.
一般来说,无理数指数幂
是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.
思考: 的含义是什么?
由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:
例2(P56,例2)求值
;;;.
例3(P56,例3)用分数指数幂的形式表或下列各式(>0)
;;.
分析:先把根式化为分数指数幂,再由运算性质来运算.
解:;
;
.
例4.计算下列各式(式中字母都是正数):
⑴ ;⑵ .
解:⑴原式=[2×(-6)÷(-3)];
⑵原式=
说明:该例是运用分数指数幂的定义和运算性质进行计算的题,第⑴小题是仿照单项式乘除法进行的,首先将系数相乘除,然后将同底数的幂相乘除;第⑵小题是先按积的乘方计算,再按幂的乘方计算,在计算过程中要特别注意符号. 同学们在下面做题中,刚开始时,要严格按照象例题一样的解题步骤进行,待熟练以后再简化计算步骤.[:]
例5. 计算下列各式:
(1) ;(2)(a>0).
说明:本例是利用分数指数幂来进行根式计算,其顺序是先把根式化为分数指数幂,再根据幂的运算性质进行计算;对于计算结果,若没有特别要求,就用分数指数幂的形式表示,若有特殊要求,可根据要求给出结果,但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数
(三)达标检测
1.下列运算结果中,正确的是( )
A.a2a3=a5 B.(-a2)3=(-a3)2
C.(-1)0=1 D.(-a2)3=a6
【解析】 a2a3=a2+3=a5;(-a2)3=-a6≠(-a3)2=a6;(-1)0=1,若成立,需要满足a≠1;(-a2)3=-a6,故选A.
【答案】 A
2.下列各式中成立的一项是( )
A.7=n7m B.=
C.=(x+y) D.=
【解析】 A中应为7=n7m-7;B中等式左侧为正数,右侧为负数;C中x=y=1时不成立;D正确.
【答案】 D
3.(a>0)的值是( )
A. 1 B.a
C.a D.a
【解析】 原式=a3·a-·a-=a3--=a.
【答案】 D
4.计算:0.25×-4-4÷20--=________.
【答案】 -4