人教版高中数学必修二教案:4.3.2空间两点间的距离公式

文档属性

名称 人教版高中数学必修二教案:4.3.2空间两点间的距离公式
格式 zip
文件大小 49.9KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-09-07 22:17:44

图片预览

文档简介

§4.3.2 空间两点间的距离公式
(一)教学目标
1.知识与技能
使学生掌握空间两点间的距离公式
2.过程与方法
经历空间两点将距离公式的推导过程
3.情态与价值观
通过空间两点间距离公式的推导,使学生经历从易到难,从特殊到一般的认识过程
(二)教学重点、难点
重点:空间两点间的距离公式;
难点:一般情况下,空间两点间的距离公式的推导。
知识要点:
1. 空间两点、间的距离公式:.
2. 坐标法求解立体几何问题时的三个步骤:
①在立体几何图形中建立空间直角坐标系;
②依题意确定各相应点的坐标;
③通过坐标运算得到答案.
3. 对称问题,常用对称的定义求解. 一般地,点P(x, y, z) 关于坐标平面xOy、yOz、zOx的对称点的坐标分别为(x, y,- z)、(-x, y, z)、(x, -y, z);关于x轴、y轴、z轴的对称点的坐标分别为(x, -y,- z)、(-x, y, -z)、(-x, -y, z);关于原点的对称点的坐标为(-x,- y,- z).
例题精讲:
【例1】已知A(x,2,3)、B(5,4,7),且|AB|=6,求x的值.
解:|AB|=6,∴,
即,解得x=1或x=9.
【例2】求点P(1,2,3)关于坐标平面xOy的对称点的坐标.
解:设点P关于坐标平面xOy的对称点为,连交坐标平面xOy于Q,
则坐标平面xOy,且|PQ|=|Q|,
∴在x轴、y轴上的射影分别与P在x轴、y轴上的射影重合,在z轴上的射影与P在z轴上的射影关于原点对称,
∴与P的横坐标、纵坐标分别相同,竖坐标互为相反数,
∴点P(1,2,3)关于坐标平面xOy的对称点的坐标为(1,2,-3).
【例3】在棱长为a的正方体-中,求异面直线间的距离.
解:以D为坐标原点,从D点出发的三条棱所在直线为坐标轴,建立如图所示的空间直角坐标系.
设P、Q分别是直线和上的动点,其坐标分别为(x, y, z)、(0,),则由正方体的对称性,显然有x=y. 要求异面直线间的距离,即求P、Q两点间的最短距离.
设P在平面AC上的射影是H,由在中,,所以,∴x=a-z,
∴P的坐标为(a-z, a-z, z)
∴ |PQ|==
∴当时,|PQ|取得最小值,最小值为.
∴异面直线间的距离为.
点评:通过巧设动点坐标,得到关于两点间距离的目标函数,由函数思想得到几何最值. 注意这里对目标函数最值的研究,实质就是非负数最小为0.
【例4】在四面体P-ABC中,PA、PB、PC两两垂直,设PA=PB=PC=a,求点P到平面ABC的距离.
解:根据题意,可建立如图所示的空间直角坐标系P-xyz,
则P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a).
过P作PH平面ABC,交平面ABC于H,则PH的长即为点P到平面ABC的距离.
PA=PB=PC,∴H为ABC的外心,
又ABC为正三角形,
∴H为ABC的重心,可得H点的坐标为.
∴|PH|=,
∴点P到平面ABC的距离为
点评:重心H的坐标,可以由比例线段得到. 通过建立空间直角坐标系,用代数方法来计算点面距离. 本题也可以用几何中的等体积法来求解.