3.2 一元二次不等式及其解法(一)
一、教学目标
1、正确理解一元二次方程、二次函数与一元二次不等式的关系,掌握一元二次不等式的解法;
2、学习“三个二次”的关系,体会事物之间普遍联系的辩证思想;
二、教学重点、难点
1.教学重点:一元二次不等式的解法
2.教学难点:理解一元二次方程、二次函数与一元二次不等式的关系
三、教学过程
1.一元二次不等式概念的引入
(1)创设情境,引入概念
播放2014“新闻联播最萌结尾”,为学生创设如下问题情境:
春天来了,熊猫饲养员计划在靠墙的位置为它们圈建一个矩形的室外活动室。现有可以做出20m栅栏的材料,要求使得活动室的面积不小于42m2,你能确定与墙平行的栅栏的长度范围吗?
分析可得如下数学模型:
设与墙平行的栅栏长度为x(0则依题意得:
整理得: x2-20x+84≤0
师生活动:针对问题情境,在教师的引导下,展开课堂讨论,分析得出以上数学模型。
设计意图:舍弃课本上枯燥的收费问题,换用一个鲜活的实例吸引学生的注意力,激发学习兴趣,以便顺利导入新课。
(2)观察归纳,形成概念
观察式子: x2-20x+84≤0
抢答竞赛: (1)该式子是等式还是不等式?
(2)该式中含有几个未知数?
(3)未知数的最高次数是几次?
通过抢答竞赛,你能归纳出一元二次不等式的定义吗?
定义:我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。
其一般形式为: ax2+bx+c>0 (a≠0)
ax2+bx+c<0 (a≠0)
ax2+bx+c≥0 (a≠0)
ax2+bx+c≤0 (a≠0)
师生活动:让学生观察所得式子,抢答以上三个问题。在此基础上,学生自己归纳一元二次不等式的定义,教师帮助明确一元二次不等式的一般形式。
设计意图:通过抢答竞赛,即活跃了课堂气氛,也为学生归纳一元二次不等式定义做好知识准备。整个环节意在让学生经历数学知识的产生过程,体会成功的喜悦。
(3)辨析讨论,深化概念
抢答竞赛:
判断下列式子是不是一元二次不等式?
xy+3≤0
(x+2)(x-3)<0
x3+5x-6>0
ax2+bx+c>0
师生活动:教师再次展开抢答竞赛,其中命题(4)的判断中,教师要说明二次项系数a可能为0,也可能不为0。
设计意图:通过问题辨析,加深概念的理解,让学生区别一元二次不等式与其他不等式.(1)题可使学生明确定义中“一元”的意思,(3)(4)使学生明确定义中“二次”的意思.