高中数学必修五教案:2.4等比数列教案

文档属性

名称 高中数学必修五教案:2.4等比数列教案
格式 zip
文件大小 13.9KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-09-07 22:35:06

图片预览

文档简介

2.4等比数列
(一)教学目标
1`.知识与技能:理解等比数列的概念;掌握等比数列的通项公式;理解这种数列的模型应用.
2.过程与方法:通过丰富实例抽象出等比数列模型,经历由发现几个具体数列的等比关系,归纳出等比数列的定义,通过与等差数列的通项公式的推导类比,探索等比数列的通项公式.
3.情态与价值:培养学生从实际问题中抽象出数列模型的能力.
(二)教学重、难点
重点:等比数列的定义和通项公式
难点:等比数列与指数函数的关系
(三)学法与教学用具
学法:首先由几个具体实例抽象出等比数列的模型,从而归纳出等比数列的定义;与等差数列通项公式的推导类比,推导等比数列通项公式。
教学用具:投影仪
(四)教学设想
[创设情景] 分析书上的四个例子,各写出一个数列来表示
[探索研究]
四个数列分别是①1, 2, 4, 8, …
②1,,,,…
③1,20 ,202 ,203 ,…
④10000×1.0198,10000×1.01982,10000×1.01983 10000×1.01984,10000×1.01985
观察四个数列:
对于数列①,从第2项起,每一项与前一项的比都等于2
对于数列②,从第2项起,每一项与前一项的比都等于
对于数列③,从第2项起,每一项与前一项的比都等于20
对于数列④,从第2项起,每一项与前一项的比都等于1.0198
可知这些数列的共同特点:从第2项起, 每一项与前一项的比都等于同一常数.
于是得到等比数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示(q≠0)
因此,以上四个数列均是等比数列,公比分别是2,,20,1.0198.
与等差中项类似,如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等差中项,这时,a,b一定同号,G2=ab
在归纳等比数列公式时,让学生先回忆等差数列通项公式的归纳,类比这个过程,归纳如下:a2=a1q
a3=a2q=(a1q)q=a1q2
a4=a3q=(a1q2)q=a1q3
… …
可得 an=a1qn-1
上式可整理为an=qn而y= qx(q≠1)是一个不为0的常数与指数函数qx的乘积,从图象上看,表示数列 {qn }中的各项的点是函数 y= qx 的图象上的孤立点
[注意几点]
不要把an错误地写成an=a1qn
对于公比q,要强调它是“从第2项起,每一项与它的前一项的比”防止把相邻两项的比的次序颠倒
公比q是任意常数,可正可负
首项和公比均不为0
[例题分析]
某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84%.这种物质的半衰期为多长(精确到1年)?
评注:要帮助学生发现实际问题中数列的等比关系,抽象出数学模型;通项公式反映了数列的本质特征,因此关于等比数列的问题首先应想到它的通项公式an=a1qn-1
根据图2.4-2中的框图,写出所打印数列的前5项,并建立数列的递推公式.这个数列是等比数列吗?
评注:要证明一个数列是等比数列,只需证明对于任意正整数n,是一个常数就行了
一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.
评注:帮助学生再次体会通项公式的作用及其与方程之间的联系
已知{a}{bn}是项数相同的等比数列,仿照下表中的例子填写表格,从中你能得出什么结论?证明你的结论.
评注:两个等比数列的积仍然是等比数列
[随堂练习]第1、2、3题
[课堂小结]
首项和公比都不为0
分别从定义、通项公式、相应图象的角度类比等差数列和等比数列
(五)评价设计
(1)课后思考:课本 [探究]
(2)课后作业:第1、2、6题