首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
必修1
第二章 基本初等函数(Ⅰ)
2.2 对数函数
2.2.2对数函数及其性质
新人教A版必修1(课件24张PPT 学案)2.2.2.1对数函数的图象及性质(2份)
文档属性
名称
新人教A版必修1(课件24张PPT 学案)2.2.2.1对数函数的图象及性质(2份)
格式
zip
文件大小
1.2MB
资源类型
教案
版本资源
人教新课标A版
科目
数学
更新时间
2019-09-08 21:56:44
点击下载
文档简介
第1课时 对数函数的图象及性质
知识点一 对数函数的概念
函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是{x|x>0}.
形如y=2log2x,y=log2都不是对数函数,可称其为对数型函数.
知识点二 对数函数的图象与性质
a>1
0
图
象
性
质
定义域(0,+∞)
值域R
过点(1,0),即当x=1时,y=0
在(0,+∞)上是增函数
在(0,+∞)上是减函数
底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.
知识点三 反函数
指数函数y=ax和对数函数y=logax(a>0且a≠1)互为反函数.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)对数函数的定义域为R.( )
(2)y=log2x2与logx3都不是对数函数.( )
(3)对数函数的图象一定在y轴右侧.( )
(4)函数y=log2x与y=x2互为反函数.( )
答案:(1)× (2)√ (3)√ (4)×
2.下列函数中是对数函数的是( )
A.y=logx B.y=log (x+1)
C.y=2logx D.y=logx+1
解析:形如y=logax(a>0,且a≠1)的函数才是对数函数,只有A是对数函数.
答案:A
3.函数y=ln(1-x)的定义域为( )
A.(0,1) B.[0,1)
C.(0,1] D.[0,1]
解析:由题意,得解得0≤x<1;故函数y=ln(1-x)的定义域为[0,1).
答案:B
4.若f(x)=log2x,x∈[2,3],则函数f(x)的值域为________.
解析:因为f(x)=log2x在[2,3]上是单调递增的,
所以log22≤log2x≤log23,
即1≤log2x≤log23.
答案:[1,log23]
类型一 对数函数的概念
例1 下列函数中,哪些是对数函数?
(1)y=loga(a>0,且a≠1);
(2)y=log2x+2;
(3)y=8log2(x+1);
(4)y=logx6(x>0,且x≠1);
(5)y=log6x.
【解析】 (1)中真数不是自变量x,不是对数函数.(2)中对数式后加2,所以不是对数函数.(3)中真数为x+1,不是x,系数不为1,故不是对数函数.(4)中底数是自变量x,而非常数,所以不是对数函数.(5)中底数是6,真数为x,系数为1,符合对数函数的定义,故是对数函数.
用对数函数的概念例如y=logax(a>0且a≠0)来判断.
方法归纳
判断一个函数是对数函数的方法
跟踪训练1 若函数f(x)=(a2-a+1)log(a+1)x是对数函数,则实数a=________.
解析:由a2-a+1=1,解得a=0或a=1.
又底数a+1>0,且a+1≠1,所以a=1.
答案:1,
对数函数y=logax系数为1.
类型二 求函数的定义域
例2 求下列函数的定义域:
(1)y=lg(x+1)+;
(2)y=log(x-2)(5-x).
【解析】 (1)要使函数有意义,需即
∴-1
∴函数的定义域为(-1,1).
(2)要使函数有意义,需∴
∴定义域为(2,3)∪(3,5).,
真数大于0,偶次根式被开方数大于等于0,分母不等于0,列不等式组求解.
方法归纳
求定义域有两种题型,一种是已知函数解析式求定义域,常规为:分母不为0;0的零次幂与负指数次幂无意义;偶次根式被开方式(数)非负;对数的真数大于0,底数大于0且不等于1.另一种是抽象函数的定义域问题.同时应注意求函数定义域的解题步骤.
跟踪训练2 函数y=的定义域是( )
A.(0,+∞) B.(5,6]
C.(5,+∞) D.(-∞,6]
解析:由得
∴5
答案:B,
真数大于0,偶次根式被开方数大于等于0.
类型三 对数函数的图象问题
例3 (1)函数y=x+a与y=logax的图象只可能是下图中的( )
(2)已知函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则f(log32)=________.
(3)如图所示的曲线是对数函数y=logax,y=logbx,y=logcx,y=logdx的图象,则a,b,c,d与1的大小关系为________.
【解析】 (1)A中,由y=x+a的图象知a>1,而y=logax为减函数,A错;B中,0<a<1,而y=logax为增函数,B错;C中,0<a<1,且y=logax为减函数,所以C对;D中,a<0,而y=logax无意义,也不对.
(2)依题意可知定点A(-2,-1),f(-2)=3-2+b=-1,b=-,故f(x)=3x-,f(log32)=3log32-=2-=.
(3)由题干图可知函数y=logax,y=logbx的底数a>1,b>1,函数y=logcx,y=logdx的底数0<c<1,0<d<1.
过点(0,1)作平行于x轴的直线,则直线与四条曲线交点的横坐标从左向右依次为c,d,a,b,显然b>a>1>d>c.
【答案】 (1)C (2) (3)b>a>1>d>c
(1)由函数y=x+a的图象判断出a的范围.
(2)依据loga1=0,a0=1,求定点坐标.
(3)沿直线y=1自左向右看,对数函数的底数由小变大.
方法归纳
解决对数函数图象的问题时要注意
(1)明确对数函数图象的分布区域.对数函数的图象在第一、四象限.当x趋近于0时,函数图象会越来越靠近y轴,但永远不会与y轴相交.
(2)建立分类讨论的思想.在画对数函数图象之前要先判断对数的底数a的取值范围是a>1,还是0
(3)牢记特殊点.对数函数y=logax(a>0,且a≠1)的图象经过点:(1,0),(a,1)和.
跟踪训练3
(1)如图所示,曲线是对数函数y=logax(a>0,且a≠1)的图象,已知a取,,,,则相应于C1,C2,C3,C4的a值依次为( )
A.,,, B.,,,
C.,,, D.,,,
(2)函数y=loga|x|+1(0
解析:(1)方法一 作直线y=1与四条曲线交于四点,由y=logax=1,得x=a(即交点的横坐标等于底数),所以横坐标小的底数小,所以C1,C2,C3,C4对应的a值分别为,,,,故选A.
方法二 由对数函数的图象在第一象限内符合底大图右的规律,所以底数a由大到小依次为C1,C2,C3,C4,即,,,.故选A.
(2)函数为偶函数,在(0,+∞)上为减函数,(-∞,0)上为增函数,故可排除选项B,C,又x=±1时y=1,故选A.
答案:(1)A (2)A
(1)增函数底数a>1,
减函数底数0<a<1.
(2)先去绝对值,再利用单调性判断.
[基础巩固](25分钟,60分)
一、选择题(每小题5分,共25分)
1.下列函数是对数函数的是( )
A.y=2+log3x
B.y=loga(2a)(a>0,且a≠1)
C.y=logax2(a>0,且a≠1)
D.y=ln x
解析:判断一个函数是否为对数函数,其关键是看其是否具有“y=logax”的形式,A,B,C全错,D正确.
答案:D
2.若某对数函数的图象过点(4,2),则该对数函数的解析式为( )
A.y=log2x B.y=2log4x
C.y=log2x或y=2log4x D.不确定
解析:由对数函数的概念可设该函数的解析式为y=logax(a>0,且a≠1,x>0),则2=loga4=loga22=2loga2,即loga2=1,a=2.故所求解析式为y=log2x.
答案:A
3.设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )
A.(1,2) B.(1,2]
C.(-2,1) D.[-2,1)
解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.
答案:D
4.函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则( )
A.f(x)=lg x B.f(x)=log2x
C.f(x)=ln x D.f(x)=xe
解析:易知y=f(x)是y=ex的反函数,所以f(x)=ln x.
答案:C
5.已知a>0,且a≠1,函数y=ax与y=loga(-x)的图象只能是下图中的( )
解析:由函数y=loga(-x)有意义,知x<0,所以对数函数的图象应在y轴左侧,可排除A,C.又当a>1时,y=ax为增函数,所以图象B适合.
答案:B
二、填空题(每小题5分,共15分)
6.若f(x)=logax+(a2-4a-5)是对数函数,则a=________.
解析:由对数函数的定义可知
,∴a=5.
答案:5
7.已知函数f(x)=log3x,则f+f(15)=________.
解析:f+f(15)=log3+log315=log327=3.
答案:3
8.函数f(x)=loga(2x-3)(a>0且a≠1),的图象恒过定点P,则P点的坐标是________.
解析:令2x-3=1,解得x=2,且f(2)=loga1=0恒成立,所以函数f(x)的图象恒过定点P(2,0).
答案:(2,0)
三、解答题(每小题10分,共20分)
9.求下列函数的定义域:
(1)y=log3(1-x);
(2)y=;
(3)y=log7.
解析:(1)∵当1-x>0,即x<1时,
函数y=log3(1-x)有意义,
∴函数y=log3(1-x)的定义域为(-∞,1).
(2)由log2x≠0,得x>0且x≠1.
∴函数y=的定义域为{x|x>0且x≠1}.
(3)由>0,得x<.
∴函数y=log7的定义域为.
10.求出下列函数的反函数:
(1)y=logx;
(2)y=x;
(3)y=πx.
解析:(1)对数函数y=logx,它的底数为,所以它的反函数是指数函数y=x;
(2)同理,指数函数y=x的反函数是对数函数y=logx;
(3)指数函数y=πx的反函数为对数函数y=logπx.
[能力提升](20分钟,40分)
11.已知函数f(x)=ax(a>0,a≠1)的反函数为g(x),且满足g(2)<0,则函数g(x+1)的图象是下图中的( )
解析:由y=ax解得x=logay,
∴g(x)=logax.
又∵g(2)<0,∴0
故g(x+1)=loga(x+1)是递减的,并且是由函数g(x)=logax向左平移1个单位得到的.
答案:A
12.函数f(x)=的定义域是________.
解析:∵f(x)=,∴要使函数f(x)有意义,需使,即-3
答案:(-3,0)
13.已知函数y=log2x的图象,如何得到y=log2(x+1)的图象?y=log2(x+1)的定义域与值域是多少?与x轴的交点是什么?
解析:y=log2xy=log2(x+1),如图.
定义域为(-1,+∞),值域为R,与x轴的交点是(0,0).
14.已知函数f(x)=的定义域为A,函数g(x)=x(-1≤x≤0)的值域为B.
(1)求A∩B;
(2)若C={y|y≤a-1},且B?C,求a的取值范围.
解析:(1)由题意知:
?x≥2,
所以A={x|x≥2},B={y|1≤y≤2},
所以A∩B={2}.
(2)由(1)知B={y|1≤y≤2},
若要使B?C,则有a-1≥2,所以a≥3.
即a的取值范围为[3,+∞).
课件24张PPT。
点击下载
同课章节目录
第一章 集合与函数概念
1.1 集合
1.2 函数及其表示
1.3 函数的基本性质
第二章 基本初等函数(Ⅰ)
2.1 指数函数
2.2 对数函数
2.3 幂函数
第三章 函数的应用
3.1 函数与方程
3.2 函数模型及其应用
点击下载
VIP下载