课件12张PPT。3.3.4《导数在研究函数中的应用-函数的和差积商的导数熟练运用导数的函数的和差积商运算法则,并能灵活运用
教学重点:熟练运用导数的四则运算法则
教学难点:商的导数的运用教学 目标由定义求导数(三步法)步骤:注意:常见函数的导数公式:公式1:公式2:公式3:公式4:还有必要建立求导法则,若两个函数的导数存在,如何求这两个函数的和,差,积,商的导数呢?若u=u(x),v=v(x)在x处可导,则1.和(或差)的导数法则1 两个函数的和(或差)的导数,等于这两个函数的导数
的和(或差),即 根据导数的定义,可以推出可导函数四则运算的求导法则1.和(或差)的导数2.积的导数法则2 两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即3.商的导数法则3 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即课件10张PPT。3.4 生活中的优化问题举例 我们知道,汽油的消耗量w(单位:L)与汽车的速度v(单位:km/h)之间有一定的关系,汽油的消耗量w是汽车的速度v的函数.根据生活经验,思考下列两个问题:
(1)是不是汽车的速度越快,汽油的消耗量越大?
(2) “汽油的使用效率最高”的含义是什么?问题1:汽油的使用效率何时最高?汽油的使用效率G=汽油的消耗量w/汽车行使路程s,
即:G=w/s
求G的最小值问题.
问题2:如何使一个圆形磁盘储存更多信息?例2 磁盘的最大存储量问题:你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?你想从数学上知道它的道理吗?
是不是饮料瓶越大,饮料公司的利润越大?问题3:饮料瓶大小对饮料公司利润有影响吗? 某制造商制造并出售球形瓶装饮料.瓶子制造成本是0.8πr2分.已知每出售1ml的饮料,可获利0.2分,且瓶子的最大半径为6cm.例如:1)瓶子半径多大时,能使每瓶饮料的利润最大?
2)瓶子半径多大时,每瓶饮料的利润最小?如何解决优化问题?优化问题优化问题的答案
用函数表示的数学问题用导数解决数学问题 一边长为a的正方形铁片,铁片的四角截去四个边长都是x的小正方形,然后做成一个无盖方盒,x 多大时,方盒的容积V最大?问题4:无盖方盒的最大容积问题P114 4、7。作业:第三章第4节 生活中的优化问题举例
课前预习学案
一、预习目标
了解解决优化问题的思路和步骤
二、预习内容
1.概念:
优化问题:_______________________________________________________
2.回顾相关知识:
(1)求曲线y=x2+2在点P(1,3)处的切线方程.
(2)若曲线y=x3上某点切线的斜率为3,求此点的坐标。
3:生活中的优化问题,如何用导数来求函数的最小(大)值?
4.解决优化问题的基本思路是什么?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
1.要细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量与自变量,把实际问题转化为数学问题,即列出函数解析式,根据实际问题确定函数的定义域;
2.要熟练掌握应用导数法求函数最值的步骤,细心运算,正确合理地做答.
重点:求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论值应予舍去。
难点:在实际问题中,有常常仅解到一个根,若能判断函数的最大(小)值在的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值。
二、学习过程
汽油使用效率最高的问题
阅读例1,回答以下问题:
是不是汽车速度越快,汽油消耗量越大?
“汽车的汽油使用效率最高”含义是什么?
如何根据图3.4-1中的数据信息,解决汽油的使用效率最高的问题?
磁盘最大存储量问题
阅读背景知识,思考下面的问题:
问题:现有一张半径为的磁盘,它的存储区是半径介于r与R的环形区域。
(1)是不是r越小,磁盘的存储量越大?
(2)r为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
3饮料瓶大小对饮料公司利润的影响
阅读背景知识,思考下面的问题:
(1)请建立利润y与瓶子半径r的函数关系。
(2)分别求出瓶子半径多大时利润最小、最大。
(3)饮料瓶大小对饮料公司利润是如何影响的?
三、反思总结
通过上述例子,我们不难发现,解决优化问题的基本思路是:
四、当堂检测
已知某养猪场每年的固定成本是20000元,每年最大规模的养殖量是400头。每养1头猪,成本增加100元,如果收入函数是R(q)= (q是猪的数量),每年养多少头猪可使总利润最大?总利润是多少?(可用计算器)
课后练习与提高
1.打印纸型号设计原理
某种打印纸的面积为623.7cm2,要求上下页边距分别为2.54cm,左右页边距分别为3.17cm,如果要求纵向打印,长与宽分别为多少时可使其打印面积最大(精确到0.01cm)?收集一下各种型号打印纸的数据资料,并说明其中所蕴含的设计原理。
?【资料】打印纸型号数据(单位:厘米)
型号
A5
A4
A3
Legal
16开
32开
大32开
B4
B5
宽
14.8
21
29.7
21.59
18.4
13
14
25.7
18.2
高
21
29.7
42
35.56
26
18.4
20.3
36.4
25.7
2.圆柱形金属饮料罐容积一定时,它的高与半径应怎样选择,才能时所用材料最省?
圆柱形金属饮料罐的表面积一定时,应怎样制作,其容积最大?
?
§3.4 生活中的优化问题举例
教学目标:
1.要细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量与自变量,把实际问题转化为数学问题,即列出函数解析式,根据实际问题确定函数的定义域;
2.要熟练掌握应用导数法求函数最值的步骤,细心运算,正确合理地做答.
重点:求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论值应予舍去。
难点:在实际问题中,有常常仅解到一个根,若能判断函数的最大(小)值在的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值。
教学方法:尝试性教学
教学过程:
前置测评:
(1)求曲线y=x2+2在点P(1,3)处的切线方程.
(2)若曲线y=x3上某点切线的斜率为3,求此点的坐标。
【情景引入】 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题
例1.汽油的使用效率何时最高
材料:随着我国经济高速发展,能源短缺的矛盾突现,建设节约性社会是众望所归。现实生活中,汽车作为代步工具,与我们的生活密切相关。众所周知,汽车的每小时耗油量与汽车的速度有一定的关系。如何使汽车的汽油使用效率最高(汽油使有效率最高是指每千米路程的汽油耗油量最少)呢?
通过大量统计分析,得到汽油每小时的消耗量 g(L/h)与汽车行驶的平均速度v(km/h)之间的函数关系g=f(v) 如图3.4-1,根据图象中的信息,试说出汽车的速度v 为多少时,汽油的使用效率最高?
解:因为G=w/s=(w/t)/(s/t)=g/v
这样,问题就转化为求g/v的最小值,从图象上看,g/v
表示经过原点与曲线上点(v,g)的直线的斜率。继续观察图像,我们发现,当直线与曲线相切时,其斜率最小,在此点处速度约为90km/h,从树枝上看,每千米的耗油量就是途中切线的斜率,即f’(90),约为0.67L.
例2.磁盘的最大存储量问题
【背景知识】计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。
为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域.
是不是越小,磁盘的存储量越大?
为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
解:由题意知:存储量=磁道数×每磁道的比特数。
设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量
×
(1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大.
(2)为求的最大值,计算.
令,解得
当时,;当时,.
因此时,磁盘具有最大存储量。此时最大存储量为
例3. 饮料瓶大小对饮料公司利润的影响
(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?
(2)是不是饮料瓶越大,饮料公司的利润越大?
【背景知识】 某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm
问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
【引导】 先建立目标函数,转化为函数的最值问题,然后利用导数求最值.
(1)半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.
(2)半径为cm时,利润最大.
【思考】根据以上三个例题,总结用导数求解优化问题的基本步骤.
【总结】(1)认真分析问题中各个变量之间的关系,正确设定最值变量与自变量,把实际问题转化为数学问题,列出适当的函数关系式,并确定函数的定义区间;
(2)求,解方程,得出所有实数根;
(3)比较函数在各个根和端点处的函数值的大小,
根据问题的实际意义确定函数的最大值或最小值。
作业:P114习题3.4第2、4题
课件80张PPT。§3.4 生活中的优化问题举例3.4生活中的优化问题测试
1.一点沿直线运动,如果由始点起经过t秒后的距离为,那么速度为零的时刻是 ( )
A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末
2.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06-0.15 和L2=2,其中为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为 ( )
A.45.606 B.45.6 C.45.56 D.45.51
3.路灯距地平面为8 m,一个身高为1.6 m的人以84 m/min
的速率在地面上行走,从路灯在地平面上射影点C,沿某直
线离开路灯,则人影长度的变化速率为( )
A. B. C. D.21
4.两车在十字路口相遇后,又沿不同方向继续前进,已知A车
向北行驶,速率为30 km/h,B车向东行驶,速率为40 km/h,那么A、B两车间直线距离的增加速率为 .
A. B.60 km/h C.80 km/h D.65 km/h
5.已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y =4-x2在x轴上方的曲线上,则这种矩形中面积最大者的边长为 .
6.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),当该容器的高为 cm时,容器的容积最大,最大容积是
7.当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t小时后的细菌数量为b(t)=105+104t-103t2.
(1)求细菌在t=5与t=10时的瞬时速度;(2)细菌在哪段时间增加,在哪段时间减少?为什么?
8.某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
[来源:学科网ZXXK]
9.一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?
[来源:学§科§网]
10.甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3元和5元,问供水站C建在岸边何处才能使水管费用最省?
[来源:Zxxk.Com]
[来源:Z&xx&k.Com]
利用导数解决生活中的优化问题60分钟测试答案
1.D. 2.B. 3.B. 4. 50 km/h.5.和. 6.10,1960.
7.解 (1)b′(t)=-2 000t+10 000,
b′(t)|t=5=-2 000×5+10 000=0, b′(t)|t=10=-2 000×10+10 000=-10 000,
即细菌在t=5与t=10时的瞬时速度分别为0和-10 000.
(2)由-2 000t+10 000>0,得t<5,由-2 000t+10 000<0,得t>5,
即细菌在t∈(0,5)时间段数量增加,在t∈(5,+∞)时间段数量减少.
8.解:每月生产吨时的利润为
[来源:学+科+网]
由解得:或(舍去).因为在内只有一个点使得,故它就是最大值点,且最大值为:
,故它就是最大值点,且最大值为:(元)
答:每月生产200吨产品时利润达到最大,最大利润为315万元.
9.解:设每次进书x千册,手续费与库存费之和为y元,
由于该书均匀投放市场,则平均库存量为批量之半,即,故有
15
[来源:学,科,网]
[来源:Zxxk.Com]
y
极小值
30+40,,令y′=0,得x =15,列表如右:
所以当x =15时,y取得极小值,且极小值唯一,
故当x =15时,y取得最小值,此时进货次数为(次).
即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少.
10.解法一:根据题意知,只有点C在线段AD上某一适当位置,才能使总运费最省,设C点距D点x km, 则 ∵BD=40,AC=50-,∴BC=
又设总的水管费用为y元,依题意有:=3(50-x)+5
y′=-3+,令y′=0,解得=30
在(0,50)上,y只有一个极值点,根据实际问题的意义,
函数在=30(km)处取得最小值,此时AC=50-=20(km)
∴供水站建在A、D之间距甲厂20 km处,可使水管费用最省.
解法二:设∠BCD=,则BC=,CD=,
设总的水管费用为f(θ),依题意,有
(θ)=3(50-40·cotθ)+5=150+40·
∴(θ)=40
令(θ)=0,得cosθ=
根据问题的实际意义,当cosθ=时,函数取得最小值,此时sinθ=,∴cotθ=,
∴AC=50-40cotθ=20(km),即供水站建在A、D之间距甲厂20 km处,可使水管费用最省.
[来源:学科网ZXXK]
[来源:Zxxk.Com]
[来源:学科网]
1.4生活中的优化问题举例
教学目标:
使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用
提高将实际问题转化为数学问题的能力
教学重点:利用导数解决生活中的一些优化问题.
教学难点:利用导数解决生活中的一些优化问题.
教学过程:
一.创设情景
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.
二.新课讲授
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:
1、与几何有关的最值问题;
2、与物理学有关的最值问题;[来源:学*科*网Z*X*X*K]
3、与利润及其成本有关的最值问题;
4、效率最值问题。
解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.
利用导数解决优化问题的基本思路:
三.典例分析
例1.海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?
解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为
。
求导数,得
。
令,解得舍去)。
于是宽为。
当时,<0;当时,>0.
因此,是函数的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。
答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。
例2.饮料瓶大小对饮料公司利润的影响
(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?
(2)是不是饮料瓶越大,饮料公司的利润越大?
【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm
问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
解:由于瓶子的半径为,所以每瓶饮料的利润是
令 解得 (舍去)
当时,;当时,.
当半径时,它表示单调递增,即半径越大,利润越高;
当半径时, 它表示单调递减,即半径越大,利润越低.
(1)半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.
(2)半径为cm时,利润最大.
换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?
有图像知:当时,,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当时,利润才为正值.
当时,,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm 时,利润最小.
例3.磁盘的最大存储量问题
计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。
为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域.
是不是越小,磁盘的存储量越大?
为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
解:由题意知:存储量=磁道数×每磁道的比特数。
设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量
×
(1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大.
(2)为求的最大值,计算.
令,解得
当时,;当时,.
因此时,磁盘具有最大存储量。此时最大存储量为
例4.圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?
解:设圆柱的高为h,底半径为R,则表面积
S=2πRh+2πR2
由V=πR2h,得,则[来源:Zxxk.Com]
S(R)= 2πR+ 2πR2=+2πR2
令 +4πR=0
解得,R=,从而h====2
即h=2R
因为S(R)只有一个极值,所以它是最小值
答:当罐的高与底直径相等时,所用材料最省
变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?
提示:S=2+h=
V(R)=R=
)=0 .
四.课堂练习
1.用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.(高为1.2 m,最大容积)
五.回顾总结
1.利用导数解决优化问题的基本思路:
2.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。
六.布置作业
例4.汽油的使用效率何时最高
我们知道,汽油的消耗量(单位:L)与汽车的速度(单位:km/h)之间有一定的关系,汽油的消耗量是汽车速度的函数.根据你的生活经验,思考下面两个问题:
(1)是不是汽车的速度越快,汽车的消耗量越大?
(2)“汽油的使用率最高”的含义是什么?
分析:研究汽油的使用效率(单位:L/m)就是研究秋游消耗量与汽车行驶路程的比值.如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(单位:L),表示汽油行驶的路程(单位:km).这样,求“每千米路程的汽油消耗量最少”,就是求的最小值的问题.
通过大量的统计数据,并对数据进行分析、研究,人们发现,汽车在行驶过程中,汽油平均消耗率(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度(单位:km/h)之间有如图所示的函数关系.
从图中不能直接解决汽油使用效率最高的问题.因此,我们首先需要将问题转化为汽油平均消耗率(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度(单位:km/h)之间关系的问题,然后利用图像中的数据信息,解决汽油使用效率最高的问题.
解:因为
这样,问题就转化为求的最小值.从图象上看,表示经过原点与曲线上点的直线的斜率.进一步发现,当直线与曲线相切时,其斜率最小.在此切点处速度约为90.
因此,当汽车行驶距离一定时,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此时的车速约为90.从数值上看,每千米的耗油量就是图中切线的斜率,即,约为 L.
例5.在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
解法一:设箱底边长为xcm,则箱高cm,得箱子容积[来源:学*科*网Z*X*X*K]
.
令 =0,解得 x=0(舍去),x=40,
并求得V(40)=16 000
由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值[来源:学科网ZXXK]
答:当x=40cm时,箱子容积最大,最大容积是16 000cm3
解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积
.(后面同解法一,略)
由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处.
事实上,可导函数、在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值
例6.在经济学中,生产x单位产品的成本称为成本函数同,记为C(x),出售x单位产品的收益称为收益函数,记为R(x),R(x)-C(x)称为利润函数,记为P(x)。
(1)、如果C(x)=,那么生产多少单位产品时,边际最低?(边际成本:生产规模增加一个单位时成本的增加量)
(2)、如果C(x)=50x+10000,产品的单价P=100-0.01x,那么怎样定价,可使利润最大?
变式:已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大?
分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.
解:收入,
利润
[来源:学*科*网]
令,即,求得唯一的极值点
答:产量为84时,利润L最大
例7.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b. [来源:学。科。网Z。X。X。K][来源:Z,xx,k.Com]
解:由梯形面积公式,得S= (AD+BC)h,其中AD=2DE+BC,DE=h,BC=b
∴AD=h+b, ∴S= ①
∵CD=,AB=CD.∴l=×2+b ②
由①得b=h,代入②,∴l=[来源:学科网]
l′==0,∴h=, 当h<时,l′<0,h>时,l′>0.
∴h=时,l取最小值,此时b=
例8.已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y =4-x2在x轴上方的曲线上,求这种矩形中面积最大者的边长.
【解】设位于抛物线上的矩形的一个顶点为(x,y),且x >0,y >0,[来源:学科网ZXXK]
则另一个在抛物线上的顶点为(-x,y),[来源:Z。xx。k.Com]
在x轴上的两个顶点为(-x,0)、(x,0),其中0< x <2.
设矩形的面积为S,则S =2 x(4-x2),0< x <2.
由S′(x)=8-6 x2=0,得x =,易知
x =是S在(0,2)上的极值点,
即是最大值点,
所以这种矩形中面积最大者的边长为和.
【点评】
应用题求解,要正确写出目标函数并明确题意所给的变量制约条件.应用题的分析中如确定有最小值,且极小值唯一,即可确定极小值就是最小值.
练习:1:一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?
【解】假设每次进书x千册,手续费与库存费之和为y元,
由于该书均匀投放市场,则平均库存量为批量之半,即,故有
y =×30+×40,y′=-+20,
令y′=0,得x =15,且y″=,f″(15)>0,
所以当x =15时,y取得极小值,且极小值唯一,
故 当x =15时,y取得最小值,此时进货次数为=10(次).
即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少.
2:有甲、乙两城,甲城位于一直线形河岸,乙城离岸40千米,乙城到岸的垂足与甲城相距50千米,两城在此河边合设一水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和700元,问水厂应设在河边的何处,才能使水管费用最省?
【解】设水厂D点与乙城到岸的垂足B点之间的距离为x千米,总费用为y元,
则CD =.
y =500(50-x)+700
=25000-500 x +700,
y′=-500+700 · (x 2+1600)· 2 x
=-500+,
令y′=0,解得x =.
答:水厂距甲距离为50-千米时,总费用最省.
【点评】
当要求的最大(小)值的变量y与几个变量相关时,我们总是先设几个变量中的一个为x,然后再根据条件x来表示其他变量,并写出y的函数表达式f(x).
舜耕中学高一数学选修1—1教案
周次
上课时间
月 日 周
课型
新授课
主备人
胡安涛
使用人
课题
3.4生活中的优化问题举例[来源:学。科。网Z。X。X。K]
教学目标
1.要细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量与自变量,把实际问题转化为数学问题,即列出函数解析式,根据实际问题确定函数的定义域;
2.要熟练掌握应用导数法求函数最值的步骤,细心运算,正确合理地做答.
教学重点
求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论值应予舍去
教学难点
在实际问题中,有常常仅解到一个根,若能判断函数的最大(小)值在的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值
课前准备
多媒体课件
一、【创设情境】
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.
通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利
用导数,解决一些生活中的优化问题.
二、【新课讲授】
【例题1】 海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向
张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何
设计海报的尺寸,才能使四周空心面积最小?
分析:先建立目标函数,然后利用导数求最值.
解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为
。
求导数,得
。
令,解得舍去)。
于是宽为。
当时,<0;当时,>0.
因此,是函数的极小值,也是最小值点。所以,当版心高为16dm,[来源:学_科_网]
宽为8dm时,能使四周空白面积最小。
答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。
【思考】在课本例1中,“是函数的极小值点,也是最小值点。”为什么?是否还有别的解法?
【探究】在实际问题中,由于=0常常只有一个根,因此若能判断该函数的最大(小
)值在的变化区间内部得到,则这个根处的极大(小)值就是所求函数的最大(小)值。
由课本例1可得,。
,。
【例题2】 饮料瓶大小对饮料公司利润的影响
(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?
(2)是不是饮料瓶越大,饮料公司的利润越大?[来源:Z&xx&k.Com]
【背景知识】 某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,
其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,
且制造商能制作的瓶子的最大半径为 6cm
问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
分析:先建立目标函数,转化为函数的最值问题,然后利用导数求最值.
解:由于瓶子的半径为,所以每瓶饮料的利润是
令 解得 (舍去)
当时,;当时,.
当半径时,它表示单调递增,即半径越大,利润越高;
当半径时, 它表示单调递减,即半径越大,利润越低.
(1)半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子
的成本,此时利润是负值.
(2)半径为cm时,利润最大.
【例题3】 磁盘的最大存储量问题
计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道
和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁
道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元
通常被称为比特(bit)。
为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。
为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域.
(1)是不是越小,磁盘的存储量越大?
(2)为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
解:由题意知:存储量=磁道数×每磁道的比特数。
设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储
任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,
最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量
×
(1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大.
(2)为求的最大值,计算.
令,解得[来源:Z#xx#k.Com]
当时,;当时,.
因此时,磁盘具有最大存储量。此时最大存储量为
三、【课堂小结】
用导数求解优化问题的基本步骤:
(1)认真分析问题中各个变量之间的关系,正确设定最值变量与自变量,把实际问题转化
为数学问题,列出适当的函数关系式,并确定函数的定义区间;
(2)求,解方程,得出所有实数根;
(3)比较函数在各个根和端点处的函数值的大小,根据问题的实际意义确定函数的最大值或最小值。
四、【书面作业】
五、【板书设计】
[来源:学科网]
六、【教后记】
1.
课件17张PPT。3.4 生活中的优化问题举例新课引入: 导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题.1.几何方面的应用2.物理方面的应用.3.经济学方面的应用(面积和体积等的最值)(利润方面最值)(功和功率等最值)例1.海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小? 解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为 。 求导数,得于是宽为 因此,x=16是函数S(x)的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。解法二:由解法(一)得问题2:饮料瓶大小对饮料公司利润有影响吗?你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?你想从数学上知道它的道理吗?
是不是饮料瓶越大,饮料公司的利润越大?
例2:某制造商制造并出售球形瓶装饮料.瓶子制造成本是0.8πr2分.已知每出售1ml的饮料,可获利0.2分,且瓶子的最大半径为6cm.1)瓶子半径多大时,能使每瓶饮料的 利润最大?
2)瓶子半径多大时,每瓶饮料的利润最小?解:由于瓶子的半径为R,所以每瓶饮料的利润是令当
当半径r>2时,f ’(r)>0它表示 f(r) 单调递增, 即半径越大,利润越高;
当半径r<2时,f ’(r)<0 它表示 f(r) 单调递减,
即半径越大,利润越低.1.半径为2cm 时,利润最小,这时表示此种瓶内饮料的利润还不够瓶子的成本,
此时利润是负值2.半径为6cm时,利润最大未命名.gsp1、当半径为2cm时,利润最小,这时f(2)<0,2、当半径为6cm时,利润最大。从图中可以看出:从图中,你还能看出什么吗?问题3、磁盘的最大存储量问题(1) 你知道计算机是如何存储、检索信息的吗?
(2) 你知道磁盘的结构吗?(3)如何使一个圆环状的磁
盘存储尽可能多的信息?例3:现有一张半径为R的磁盘,它的存储区是半径介于r与R的环行区域。是不是r越小,磁盘的存
储量越大?(2) r为多少时,磁盘具有最大存储量
(最外面的磁道不存储任何信息)?解:存储量=磁道数×每磁道的比特数(1) 它是一个关于r的二次函数,从函数的解析式可以判断,不是r越小,磁盘的存储量越大。(2) 为求f(r)的最大值,先计算解得例4:某种圆柱形的饮料罐的容积一定时,如何确定它的高与底半径,使得所用材料最省?Rh解 设圆柱的高为h,底面半径为R.则表面积为 S(R)=2πRh+2πR2.又V=πR2h(定值),即h=2R.可以判断S(R)只有一个极值点,且是最小值点.答 罐高与底的直径相等时, 所用材料最省.变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?课堂练习 1.用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.利用导数解决优化问题的基本思路:优化问题优化问题的答案
用函数表示的数学问题用导数解决数学问题回顾总结 解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。