第二章第1节 合情推理与演绎推理
一、 合情推理
课前预习学案
预习目标:
了解合情推理的含义,能利用归纳和类比等方法进行简单的推理。
二,预习内容:
从______________推出___________的结论,这样的推理通常称为归纳推理. 归纳推理的思维过程大致是
试验、观察 —— 概括、推广 —— 猜测一般结论
已知数列的每一项均为正数,=1,
(n=1,2,……),试归纳数列的一个通项公式。
根据两个对象之间在某些方面的____________,推演出它们在其他
方面也______________,这样的推理通常称为类比推理.类比推理的思维过程大致为
观察、比较 —— 联想、类推 —— 猜测新的结论
类比实数的加法和乘法,并列出它们类似的性质。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
学习目标
结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比进行简单的推理,体会并认识合情推理在数学发现中的作用。
二、学习过程:
例1、在同一个平面内,两条直线相交,有1个焦点;3条直线相交,最多有3个交点;… …;从中归纳一般结论,n条直线相交,最多有几个交点?
例2、有菱形纹和无菱形纹的正六边形地板砖,按图所示的规律拼成若干个图案,则第n个图案中的正六边形地板砖有多少块?
小结归纳推理的特点:
例3、试将平面上的圆与空间的球进行类比。
练习:类比平面内直角三角形的勾股定理,试给出空间四面体性质的猜想。
小结类比推理的特点:
当堂检测:
1、已知数对如下:(1,1),(1,2),(2,1),(1,3)(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)(1,5),(2,4),… …,则第60个数对是_______
2、在等差数列中, 也成等差数列,在等比数列中,=____________________ 也成等比数列
课后练习与提高
右边所示的三角形数组是我国古代数学家杨辉发现的,
称为杨辉三角形,根据图中的数构成的规律,所表示的数是
(A)2 (B) 4 (C) 6 (D) 8
下列推理正确的是
(A) 把 与 类比,则有: .
(B) 把 与 类比,则有:.
(C) 把 与 类比,则有:.
(D) 把 与 类比,则有:.
3、四个小动物换座位,开始是鼠、猴、兔、猫分别坐1,2,3,4号位子上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2005次互换座位后,小兔的座位对应的是
(A)编号1 (B) 编号2 (C) 编号3 (D) 编号4
4、下列各列数都是依照一定的规律排列,在括号里填上适当的数
(1)1,5,9,13,17,( );
(2),,,,( ).
5、从中,得出的一般性结论
是 .
2.1合情推理
一、教材分析
数学归纳法是人教A版普通高中课程标准实验教科书选修2-2第2章第三小节的内容,此前学生刚学习了合情推理,合情推理用的是不完全归纳法,结论的正确性有待证明。通过本节课的学习,对培养学生的抽象思维能力和创新能力,深化不等式、数列等知识,提高学生的数学素养,有重要作用。根据课程标准,本节分为两课时,此为第一课时。
二、教学目标
1,知识目标:
理解合情推理的原理和实质,并能初步运用。
2,能力目标:
学生经历发现问题、提出问题、分析问题、解决问题的过程,提高创新能力。
3,情感、态度与价值观目标:
在愉悦的学习氛围中,通过理解数学归纳法的原理和本质,感受数学内在美,激发学习热情。
三、教学重点难点
教学重点:能利用归纳进行简单的推理.
教学难点:用归纳进行推理,作出猜想.
四、教学方法
探究法
五、课时安排:1课时
六、教学过程
例1、在同一个平面内,两条直线相交,有1个焦点;3条直线相交,最多有3个交点;… …;从中归纳一般结论,n条直线相交,最多有几个交点?
例2、有菱形纹和无菱形纹的正六边形地板砖,按图所示的规律拼成若干个图案,则第n个图案中的正六边形地板砖有多少块?
小结归纳推理的特点:
例3、试将平面上的圆与空间的球进行类比。
练习:类比平面内直角三角形的勾股定理,试给出空间四面体性质的猜想。
小结类比推理的特点:
当堂检测:
1、已知数对如下:(1,1),(1,2),(2,1),(1,3)(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)(1,5),(2,4),… …,则第60个数对是_______
2、在等差数列中, 也成等差数列,在等比数列中,=____________________ 也成等比数列
课后练习与提高
右边所示的三角形数组是我国古代数学家杨辉发现的,
称为杨辉三角形,根据图中的数构成的规律,所表示的数是
(A)2 (B) 4 (C) 6 (D) 8
下列推理正确的是
(A) 把 与 类比,则有: .
(B) 把 与 类比,则有:.
(C) 把 与 类比,则有:.
(D) 把 与 类比,则有:.
3、四个小动物换座位,开始是鼠、猴、兔、猫分别坐1,2,3,4号位子上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2005次互换座位后,小兔的座位对应的是
(A)编号1 (B) 编号2 (C) 编号3 (D) 编号4
4、下列各列数都是依照一定的规律排列,在括号里填上适当的数
(1)1,5,9,13,17,( );
(2),,,,( ).
5、从中,得出的一般性结论
是 .
七、板书设计
八、教学反思
课件34张PPT。合情推理与演绎推理测试题(选修1-2)
试卷满分150,其中第Ⅰ卷满分100分,第Ⅱ卷满分50分,考试时间120分钟
第Ⅰ卷(共100分)
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
1.如果数列是等差数列,则
A. B. C. D.
2.下面使用类比推理正确的是
A.“若,则”类推出“若,则”
B.“若”类推出“”
C.“若” 类推出“ (c≠0)”
D.“” 类推出“”
3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”
结论显然是错误的,是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
4.设,,n∈N,则
A. B.- C. D.-
5.在十进制中,那么在5进制中数码2004折合成十进制为
A.29 B. 254 C. 602 D. 2004
6.函数的图像与直线相切,则=
A. B. C. D. 1
7.下面的四个不等式:①;②;③ ;④.其中不成立的有
A.1个 B.2个 C.3个 D.4个
8.抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为
A.2 B.3 C.4 D. 5
9.设 , 则
A. B. 0 C. D. 1
10.已知向量, ,且, 则由的值构成的集合是
A.{2,3} B. {-1, 6} C. {2} D. {6}
11. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
12.已知 ,猜想的表达式为
A. B. C. D.
二.解答题:本大题共5小题,每小题8分,共40分.
13.证明:不能为同一等差数列的三项.
14.在△ABC中,,判断△ABC的形状.
15.已知:空间四边形ABCD中,E,F分别为BC,CD的中点,判断直线EF与平面ABD的关系,并证明你的结论.
16.已知函数,求的最大值.
17.△ABC三边长的倒数成等差数列,求证:角.
第Ⅱ卷(共50分)
三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。
18. 类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .
19.从中,可得到一般规律为 (用数学表达式表示)
20.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .
21.设平面内有n条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用表示这n条直线交点的个数,则= ;
当n>4时,= (用含n的数学表达式表示)
四.解答题. (每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分)
22.在各项为正的数列中,数列的前n项和满足
(1) 求;(2) 由(1)猜想数列的通项公式;(3) 求
23.自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用表示某鱼群在第年年初的总量,,且>0.不考虑其它因素,设在第年内鱼群的繁殖量及捕捞量都与成正比,死亡量与成正比,这些比例系数依次为正常数.
(Ⅰ)求与的关系式;
(Ⅱ)猜测:当且仅当,满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)
24. 设函数.
(1)证明:;
(2)设为的一个极值点,证明.
五.解答题. (共8分.从下列题中选答1题,多选按所做的前1题记分)
25. 通过计算可得下列等式:
┅┅
将以上各式分别相加得:
即:
类比上述求法:请你求出的值.
26. 直角三角形的两条直角边的和为,求斜边的高的最大值
27.已知恒不为0,对于任意
等式恒成立.求证:是偶函数.
28.已知ΔABC的三条边分别为求证:
合情推理与演绎推理测试题答案(选修1-2)
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
C
D
B
B
A
D
D
C
A
B
二.解答题:本大题共5小题,每小题8分,共40分.
13.证明:假设、、为同一等差数列的三项,则存在整数m,n满足
=+md ① =+nd ②
①n-②m得:n-m=(n-m) 两边平方得: 3n2+5m2-2mn=2(n-m)2
左边为无理数,右边为有理数,且有理数无理数
所以,假设不正确。即 、、不能为同一等差数列的三项
14. ABC是直角三角形; 因为sinA=
据正、余弦定理得 :(b+c)(a2-b2-c2)=0; 又因为a,b,c为ABC的三边,所以 b+c0
所以 a2=b2+c2 即ABC为直角三角形.
15.平行; 提示:连接BD,因为E,F分别为BC,CD的中点, EF∥BD.
16.提示:用求导的方法可求得的最大值为0
17.证明:=
为△ABC三边,, .
三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。
18. .
19.
20. f(2.5)>f(1)>f(3.5) 21. 5; .
四.解答题. (每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分)
22.(1);(2);(3).
23.解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为
(II)若每年年初鱼群总量保持不变,则xn恒等于x1, n∈N*,从而由(*)式得
因为x1>0,所以a>b. 猜测:当且仅当a>b,且时,每年年初鱼群的总量保持不变.
24. 证明:1)
==
2)
① 又 ②
由①②知= 所以
五.解答题. (共8分.从下列题中选答1题,多选按所做的前1题记分)
25.[解]
┅┅
将以上各式分别相加得:
所以:
26.
27.简证:令,则有,再令即可
28.证明:设
设是上的任意两个实数,且,
因为,所以。所以在上是增函数。
由知
即.
合情推理与演绎推理测试题2(选修1-2)
班级 姓名 学号 得分
一、选择题:
1、与函数为相同函数的是( )
A. B. C. D.
2、下面使用类比推理正确的是 ( ).
A.“若,则”类推出“若,则”
B.“若”类推出“”
C.“若” 类推出“ (c≠0)”
D.“” 类推出“”
3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线
平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为 ( )
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。
A.假设三内角都不大于60度; B.假设三内角都大于60度;
C.假设三内角至多有一个大于60度; D.假设三内角至多有两个大于60度。
5、当1,2,3,4,5,6时,比较和的大小并猜想 ( )
A.时, B. 时,
C. 时, D. 时,
6、已知的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
1
2
0.5
1
a
b
c
7、在下列表格中,每格填上一个数字后,使每一行成等差数
列,每一列成等比数列,则a+b+c的值是( )
A. 1 B. 2 C.3 D.4
8、 对“a,b,c是不全相等的正数”,给出两个判断:
①;②不能同时成立,
下列说法正确的是( )
A.①对②错 B.①错②对
C.①对②对 D.①错②错
9、设三数成等比数列,而分别为和的等差中项,则( )
A. B. C. D.不确定
10、则下列等式不能成立的是( )
A. B.
C. D. (其中)
题号
1
2
3
4
5
6
7
8
9
10
答案
二、填空题:
11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 。
12、 类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .
13、从,,,,…,推广到第个等式为_________________________.
14、已知,,试通过计算,,,的值,推测出=___________.
三、解答题:
15、在△ABC中,证明:。
16、设,且,,试证:。
17、用反证法证明:如果,那么。
18、已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().
(1)若,求;
(2)试写出关于的关系式,并求的取值范围;
(3)续写已知数列,使得是公差为的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
合情推理与演绎推理测试题(选修1-2)
答案提示
1——10、 DCABD BAABC
11、____14__________
12、
13、…
14、______________
15、证明:
由正弦定理得:
16、证明:
故
17、假设,则
容易看出,下面证明。
要证:,
只需证:,
只需证:
上式显然成立,故有。
综上,。而这与已知条件相矛盾,
因此假设不成立,也即原命题成立。
18、解:(1).
(2),
,
当时,.
(3)所给数列可推广为无穷数列,其中是首项为1,公差为1的
等差数列,当时,数列是公差为的等差数列.
研究的问题可以是:
试写出关于的关系式,并求的取值范围.
研究的结论可以是:由,
依次类推可得
当时,的取值范围为等.
课件33张PPT。2.1 合情推理与演绎推理
?2.1.1 合情推理学习目标
1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.
2.了解合情推理在数学发现中的作用.课前自主学案2n-110n-11.归纳推理
由某类事物的________具有的某些特征,推出该类事物的________都具有这些特征的推理,或者由____事实概括出________的推理,称为________(简称归纳).简言之,归纳推理是由__________、由__________的推理.部分对象全部对象个别一般结论归纳推理部分到整体个别到一般2.类比推理
由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称____).简言之,类比推理是由__________的推理.
3.合情推理
归纳推理和类比推理都是根据______事实,经过观察、分析、比较、联想,再进行____、____,然后提出____的推理.我们把它们称为合情推理.通俗地说,合情推理是指“________”的推理.类比特殊到特殊已有的归纳类比猜想合乎情理归纳推理和类比推理的结论一定正确吗?
提示:归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性的,结论不一定正确.类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.课堂互动讲练根据数列前几项的特征,归纳出其通项公式或求和公式.
已知数列{an}满足a1=1,an+1=2an+1(n=1,2,3…)
(1)求a2,a3,a4,a5;
(2)归纳猜想通项公式an.【解】 (1)当n=1时,知a1=1,
由an+1=2an+1得a2=3,
a3=7,a4=15,a5=31.
(2)由a1=1=21-1,
a2=3=22-1,
a3=7=23-1,a4=15=24-1,
a5=31=25-1,
可归纳猜想出an=2n-1(n∈N*)【思维总结】 猜想通项公式时,首先从整体形式上分析:整数型、分数型、根式型等,再利用两相邻项之间相减、相除、加减某常数、平方等运算寻找规律.根据特殊几何图形的位置关系或者度量关系,归纳出所有图形的这种关系. 如图所示,在圆内画一条线段,将圆分成两部分;画两条线段,彼此最多分割成4条线段,将圆最多分割成4部分;画三条线段,彼此最多分割成9条线段,将圆最多分割成7部分;画四条线段,彼此最多分割成16条线段,将圆最多分割成11部分.(1)在圆内画5条线段,彼此最多分割成多少条线段?将圆最多分割成多少部分?
(2)猜想:在圆内画n(n≥2)条线段,彼此最多分割成多少条线段?将圆最多分割成多少部分?
【思路点拨】 每增加一条线段,与前面的每条线段最多产生1个交点,而新增加的第n条线段最多与前面的n-1条线段产生n-1个交点,则这n-1个点把第n条线段分为n段.每段把所在区域一分为二,共增加了n块区域且这n-1个点把这些点所在的线段一分为二,又增加了n-1条线段,这样就有:区域增加了n块,线段增加了n+(n-1)=2n-1条.【解】 设在圆内画n条线段,彼此最多分割成的线段为f(n)条,将圆最多分割成g(n)部分.
(1)当n=5时,f(5)=f(4)+4+5=16+4+5=25,g(5)=g(4)+5=11+5=16.
(2)猜想:在圆内画n(n≥2)条线段,彼此最多分割成f(n)=n2条线段.
∵g(1)=2,
g(2)=g(1)+2,
g(3)=g(2)+3,
g(4)=g(3)+4,
……【思维总结】 此题中,每增加一条直线,比原来增加几个交点、增加几部分,这种递推关系是解题的关键.
变式训练2 在平面内观察:
凸四边形有2条对角线,
凸五边形有5条对角线,
凸六边形有9条对角线,
…由此猜想凸n(n≥4且n∈N*)边形有几条对角线?类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中相关结论可以类比得到空间中的相关结论. 如图所示,在△ABC中,射影定理可表示为a=b·cosC+c·cosB,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.【解】 如图所示,在四面体P—ABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.
我们猜想射影定理类比推理到三维空间,其表现形式应为:S=S1·cosα+S2·cosβ+S3·cosγ.【思维总结】 四面体(三棱锥)很多性质都可以由三角形的性质类比得出.方法技巧
1.归纳推理具有从特殊到一般,由具体到抽象的认知功能.在数列问题中,常用归纳推理猜测求解数列的通项公式,其具体步骤是:
(1)通过条件求得数列中的前几项;
(2)观察数列的前几项寻求项的规律,猜测数列的通项公式并加以证明.2.在几何图形中,随着点、线、面等几何元素的变化,探究相应的线段、区域交点的变化情况常用归纳推理的方法解决,分析时要注意规律的寻找.
3.类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中相关结论可以类比得到空间中的相关结论.常用的类比有:失误防范
1.归纳推理、类比推理的结论不一定可靠,要经证明后方可确知.
2.由同样的特殊事物归纳出的一般性的结论不一定是唯一,如同数列的通项公式不唯一.第二章 推理与证明
§2.1 合情推理与演绎推理
2.1.1 合情推理(一)
一、基础过关
1.数列5,9,17,33,x,…中的x等于 ( )
A.47 B.65
C.63 D.128
2.已知a1=3,a2=6且an+2=an+1-an,则a33为 ( )
A.3 B.-3
C.6 D.-6
3.根据给出的数塔猜测123 456×9+7等于 ( )
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.1 111 110 B.1 111 111
C.1 111 112 D.1 111 113
4.我们把1,4,9,16,25,…这些数称做正方形数,这是因为这些数目的点子可以排成一个正方形(如图).
试求第n个正方形数是 ( )
A.n(n-1) B.n(n+1)
C.n2 D.(n+1)2
5.f(n)=1+++…+(n∈N*),计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,推测当n≥2时,有________.
二、能力提升
6.设x∈R,且x≠0,若x+x-1=3,猜想x2n+x-2n(n∈R*)的个位数字是________.
7.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________.
8.如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________.
9.如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n层.第n层的小正方体的个数记为Sn.解答下列问题.
(1)按照要求填表:
n
1
2
3
4
…
Sn
1
3
6
…
(2)S10=________.(3)Sn=________.
10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:
将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(1)b2 012是数列{an}中的第______项;
(2)b2k-1=________.(用k表示)
11.已知数列{an}的前n项和为Sn,a1=1且Sn-1++2=0(n≥2),计算S1,S2,S3,S4,并猜想Sn的表达式.
12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分.
(1)3条直线最多将平面分成多少部分?
(2)设n条直线最多将平面分成f(n)部分,归纳出f(n+1)与f(n)的关系;
(3)求出f(n).
三、探究与拓展
13.在一容器内装有浓度r%的溶液a升,注入浓度为p%的溶液a升,搅匀后再倒出溶液a升,这叫一次操作,设第n次操作后容器内溶液的浓度为bn,计算b1、b2、b3,并归纳出计算公式.
答案
1.B 2.A 3.B 4.C
5.f(2n)>
6.7
7.①
8.an=3n-1(n∈N*)
9.(1)10 (2)55 (3)
10.(1)5 030 (2)
11.解 当n=1时,S1=a1=1;
当n=2时,=-2-S1=-3,
∴S2=-;
当n=3时,=-2-S2=-,
∴S3=-;
当n=4时,=-2-S3=-,
∴S4=-.
猜想:Sn=-(n∈N*).
12.解 (1)3条直线最多将平面分成7个部分.
(2)f(n+1)=f(n)+n+1.
(3)f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=n+(n-1)+(n-2)+…+2+2=.
13.解 b1==(r+p);
b2==[()2r+p+p];
b3==[()3r+p+p+p];
归纳得bn=[()nr+p+p+…+p].
2.1.1 合情推理(二)
一、基础过关
1.下列推理正确的是 ( )
A.把a(b+c)与loga(x+y)类比,则有loga(x+y)=logax+logay
B.把a(b+c)与sin (x+y)类比,则有sin(x+y)=sin x+sin y
C.把a(b+c)与ax+y类比,则有ax+y=ax+ay
D.把a(b+c)与a·(b+c)类比,则有a·(b+c)=a·b+a·c
2.下面几种推理是合情推理的是 ( )
①由圆的性质类比出球的有关性质;
②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;
③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;
④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.
A.①② B.①③
C.①②④ D.②④
3.在等差数列{an}中,若an<0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{bn}中,若bn>0,q>1,则下列有关b4,b5,b7,b8的不等关系正确的是 ( )
A.b4+b8>b5+b7
B.b5+b7>b4+b8
C.b4+b7>b5+b8
D.b4+b5>b7+b8
4.已知扇形的弧长为l,半径为的r,类比三角形的面积公式:S=,可推知扇形面积公式S扇=________.
5.类比平面直角坐标系中△ABC的重心G(,)的坐标公式(其中A(x1,y1)、B(x2,y2)、C(x3,y3)),猜想以A(x1,y1,z1)、B(x2,y2,z2)、C(x3,y3,z3)、D(x4,y4,z3)为顶点的四面体A—BCD的重心G(,,)的公式为________.
6.公差为d(d≠0)的等差数列{an}中,Sn是{an}的前n项和,则数列S20-S10,S30-S20,S40-S30也成等差数列,且公差为100d,类比上述结论,相应地在公比为q(q≠1)的等比数列{bn}中,若Tn是数列{bn}的前n项积,则有_____________________________________.
二、能力提升
7.把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是________.
①如果一条直线与两条平行线中的一条相交,则也与另一条相交;
②如果一条直线与两条平行线中的一条垂直,则也与另一条垂直;
③如果两条直线同时与第三条直线相交,则这两条直线相交或平行;
④如果两条直线同时与第三条直线垂直,则这两条直线平行.
8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质中,你认为比较恰当的是________.(填序号)
①各棱长相等,同一顶点上的两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.
9.已知抛物线y2=2px(p>0),过定点(p,0)作两条互相垂直的直线l1、l2,若l1与抛物线交于P、Q两点,l2与抛物线交于M、N两点,l1的斜率为k,某同学已正确求得弦PQ的中点坐标为(+p,),请你写出弦MN的中点坐标:________.
10.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.
11.如图(1),在平面内有面积关系=·,写出图(2)中类似的体积关系,并证明你的结论.
12. 如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.
三、探究与拓展
13.已知在Rt△ABC中,AB⊥AC,AD⊥BC于D,有=+成立.那么在四面体A-BCD中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及给出理由.
答案
1.D 2.C
3.A 4.lr
5.
6.,,也成等比数列,且公比为q100
7.②
8.①②③
9.(pk2+p,-pk)
10.
11.解 类比=·,
有=··
证明:如图(2):设C′,C到平面PAB的距离分别为h′,h.
则=,
故=
=
=.
12.解 如图所示,在四面体P-ABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.
我们猜想射影定理类比推理到三维空间,其表现形式应为:S=S1·cos α+S2·cos β+S3·cos γ.
13.解 类比AB⊥AC,AD⊥BC,可以猜想四面体A-BCD中,AB,AC,AD两两垂直,AE⊥平面BCD.则=++.猜想正确.
如图所示,连接BE,并延长交CD于F,连接AF.
∵AB⊥AC,AB⊥AD,
∴AB⊥平面ACD.
而AF?平面ACD,
∴AB⊥AF.
在Rt△ABF中,AE⊥BF,
∴=+.
在Rt△ACD中,AF⊥CD,
∴=+.
∴=++,
故猜想正确.