2. 2.2反证法
课前预习学案
一、预习目标:
使学生了解反证法的基本原理;掌握运用反证法的一般步骤;学会用反证法证明一些典型问题.
二、预习内容:
提出问题:
问题1:桌面上有3枚正面朝上的硬币,每次用双手同时翻转2枚硬币,那么无论怎么翻转,都不能使硬币全部反面朝上。你能解释这种现象吗?
学生尝试用直接证明的方法解释。
采用反证法证明:假设经过若干次翻转可以使硬币全部反面向上,由于每枚硬币从正面朝上变为反面朝上都需要翻转奇数次,所以 3 枚硬币全部反面朝上时,需要翻转 3 个奇数之和次,即要翻转奇数次.但由于每次用双手同时翻转 2 枚硬币, 3 枚硬币被翻转的次数只能是 2 的倍数,即偶数次.这个矛盾说明假设错误,原结论正确,即无论怎样翻转都不能使 3 枚硬币全部反面朝上.
问题2:A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎。则C必定是在撒谎,为什么?
分析:假设C没有撒谎, 则C真.那么A假且B假;由A假, 知B真. 这与B假矛盾.那么假设C没有撒谎不成立;则C必定是在撒谎.
推进新课
??在解决某些数学问题时,我们会不自觉地使用反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
学习目标
(1)使学生了解反证法的基本原理;
(2)掌握运用反证法的一般步骤;
(3)学会用反证法证明一些典型问题.
二、学习过程:
例1、已知直线和平面,如果,且,求证。
解析:让学生理解反证法的严密性和合理性;
证明:因为,
所以经过直线a , b 确定一个平面。
因为,而,
所以 与是两个不同的平面.
因为,且,
所以.
下面用反证法证明直线a与平面没有公共点.假设直线a 与平面有公共点,则,即点是直线 a 与b的公共点,这与矛盾.所以 .
点评:用反证法的基本步骤:
第一步 分清欲证不等式所涉及到的条件和结论;
第二步 作出与所证不等式相反的假定;
第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;
第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等利
变式训练1.求证:圆的两条不全是直径的相交弦不能互相平分.
例2、求证:不是有理数
例3、设二次函数, 求证:中至少有一个不小于.
解析:直接证明中至少有一个不小于.比较困难,我们应采用反证法
证明:假设都小于,则
(1)
另一方面,由绝对值不等式的性质,有
(2)
(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。
点评:结论为“至少”、“至多”等时,我们应考虑用反证法解决。
变式训练3、设0 < a, b, c < 1,求证:(1 ( a)b, (1 ( b)c, (1 ( c)a,不可能同时大于
反思总结:
1.反证法的基本步骤:
(1)假设命题结论不成立,即假设结论的反面成立;
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)从矛盾判定假设不正确,从而肯定命题的结论正确
2.归缪矛盾:
(1)与已知条件矛盾;
(2)与已有公理、定理、定义矛盾;
(3)自相矛盾。
3.应用反证法的情形:
(1)直接证明困难;
(2)需分成很多类进行讨论;
(3)结论为“至少”、“至多”、“有无穷多个” 类命题;
(4结论为 “唯一”类命题;
当堂检测:
1. 证明不可能成等差数列.
2.设,求证
证明:假设,则有,从而
因为,所以,这与题设条件矛盾,所以,原不等式成立。
课后练习与提高
一、选择题
1.用反证法证明命题:若整系数一元二次方程有有理根,那么中至少有一个是偶数时,下列假设中正确的是( )
A.假设都是偶数
B.假设都不是偶数
C.假设至多有一个是偶数
D.假设至多有两个是偶数
2.(1)已知,求证,用反证法证明时,可假设,(2)已知,,求证方程的两根的绝对值都小于1.用反证法证明时可假设方程有一根的绝对值大于或等于1,即假设,以下结论正确的是( )
A.与的假设都错误
B.与的假设都正确
C.的假设正确;的假设错误
D.的假设错误;的假设正确
3.命题“三角形中最多只有一个内角是钝角”的结论的否定是( )
A.有两个内角是钝角 B.有三个内角是钝角
C.至少有两个内角是钝角 D.没有一个内角是钝角
二、填空题
4..三角形ABC中,∠A,∠B,∠C至少有1个大于或等于60的反面为_______.
5. 已知A为平面BCD外的一点,则AB、CD是异面直线的反面为_______.
三、解答题
6.已知实数满足,,求证中至少有一个是负数.
课件9张PPT。课件28张PPT。2.2.2 反证法学习目标
1.了解反证法是间接证明的一种基本方法.
2.理解反证法的思考过程,会用反证法证明数学问题.课前自主学案综合法是“________”,而分析法则是“________”.它们是截然相反的两种证明方法,分析法便于我们去寻找思路,而综合法便于过程的叙述,两种方法各有所长,在解决具体的问题时,综合运用效果会更好.由因导果执果索因1.反证法
假设原命题______(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明________,从而证明了__________,这种证明方法叫做反证法.
2.反证法常见矛盾类型
反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与________、____、____、____等矛盾.不成立假设错误原命题成立已知条件公理定义定理用反证法证明命题“若p,则q”时,为什么 q假q就真?
提示:在证明数学命题时,要证明的结论要么正确,要么错误,二者必居其一,所以命题结论q的反面 q错误时,q就一定正确.课堂互动讲练结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题,此类命题的反面比较具体,适于应用反证法.【思路点拨】 直接说明,不易入手,故应用反证法.【思维总结】 本题涉及方程的根,所以应从根的范围上或者从值域的表达式上寻找矛盾.变式训练1 已知a+b+c=0,求证:ab+bc+ca不大于零.
证明:假设ab+bc+ca>0,
因为a2+b2+c2≥0.
则(a2+b2+c2)+2(ab+bc+ca)>0.
所以(a+b+c)2>0,即a+b+c≠0,这与a+b+c=0矛盾,所以假设不成立,故ab+bc+ca≤0.当命题中出现“至少……”、“至多……”、“不都……”、“都不……”、“没有……”、“唯一”等指示性词语时,宜用反证法.注意“至少有一个”、“至多有一个”、“都是”的否定形式分别为“一个也没有”、“至少有两个”、“不都是”. 已知a≥-1,求证三个方程:
x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数解.【思维总结】 反证法的主要依据是逻辑中的排中律,排中律的一般表现形式是:或者是A,或者非A,即在同一讨论过程中,A和非A有一个且仅有一个是对的,不能有第三种情形出现.结论以“有且只有一个”、“只有一个”、“唯一存在”等形式出现的命题,由于反设结论易于导出矛盾,所以用反证法证其唯一性简单明了.
已知:一点A和平面α.
求证:经过点A只能有一条直线和平面α垂直.【思路点拨】【证明】 根据点A和平面α的位置关系,分两种情况证明.
图1(1)如图1,点A在平面α内,假设经过点A至少有平面α的两条垂线AB、AC,那么AB、AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于经过点A的一条直线a.
因为AB⊥平面α ,AC⊥平面α,a?α,所以AB⊥a,AC⊥a,在平面β内经过点A有两条直线都和直线a垂直,这与平面几何中经过直线上一点只能有已知直线的一条垂线相矛盾.(2)如图2,点A在平面α外,假设经过点A至少有平面α的两条垂线AB和AC(B、C为垂足),那么AB、AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于直线BC,因为AB⊥平面α,AC⊥平面α,BC?α,所以AB⊥BC,AC⊥BC.
图2在平面β内经过点A有两条直线都和BC垂直,这与平面几何中经过直线外一点只能有已知直线的一条垂线相矛盾.
综上,经过一点A只能有平面α的一条垂线.
【思维总结】 证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.变式训练3 求证方程2x=3有且仅有一个实根.
证明:∵2x=3,
∴x=log23,这说明方程有一个根.
下面用反证法证明根的唯一性.
假设方程2x=3有两个根b1,b2(b1≠b2),则2b1=3,2b2=3,两式相除得2b1-b2=1,如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.
如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.
因此b1-b2=0,则b1=b2,这与b1≠b2相矛盾.
如果方程的根多于两个,同样可推出矛盾.
故方程2x=3有且只有一个根.方法技巧
1.反证法不是直接去证明结论,而是先否定结论,在否定结论的基础上,运用演绎推理,导出矛盾,从而肯定结论的真实性.2.结论为肯定形式或者否定形式的命题的证明常用反证法,通过反设将肯定命题转化为否定命题或将否定命题转化为肯定命题,然后用转化后的命题作为条件进行推理,很容易推出矛盾,从而达到证题的目的.3.常用正面词语的否定形式失误防范
1.使用反证法必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不完全的.
2.反证法的“归谬”要合理.课件16张PPT。本章优 化 总 结知识体系网络专题探究精讲合情推理又包括归纳推理和类比推理,这两种推理得出的结论都不一定正确,有待证明;而演绎推理又叫逻辑推理,在大前提、小前提及推理过程都正确的情况下,得出的结论一定正确. 看下面一段发现数学公式的过程,指出各自运用了哪种推理方式.公式:S2(n)=12+22+32+…+n2.
(1)首先列表计算观察:(3)再列表计算、对比:运用________推理;(4)从上表的数据中没有看到明显的规律,再进一步列表计算:【答案】 (1)演绎 (2)类比 (3)演绎 (4)演绎
(5)归纳综合法和分析法是两种思路截然相反的证明方法,分析法既可用于寻找解题思路,也可以是完整的证明过程.分析法与综合法相互转换、相互渗透,充分利用这一辩证关系,在解题中综合法与分析法联合运用,转换解题思路,增加解题途径.反证法是一种间接证明命题的方法,它从命题结论的反面出发引出矛盾,从而肯定命题的结论.
如图所示,已知两直线l∩ m=O,l?α,m?α,l?β,m?β,α∩β=a.求证:直线l与m中至少有一条与β相交.【证明】 假设l、m都不与β相交,
∵l?β,m?β,
∴l∥β且m∥β.
又∵l?α,m?α,α∩β=a,
∴l∥α,m∥α,∴l∥m.
这与已知l、m是相交直线矛盾.
因此直线l和m中至少有一条与β相交.2.2.2 反证法
一、基础过关
1.反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是 ( )
①与已知条件矛盾 ②与假设矛盾 ③与定义、公理、定理矛盾 ④与事实矛盾
A.①② B.①③
C.①③④ D.①②③④
2.否定:“自然数a,b,c中恰有一个偶数”时正确的反设为 ( )
A.a,b,c都是偶数
B.a,b,c都是奇数
C.a,b,c中至少有两个偶数
D.a,b,c中都是奇数或至少有两个偶数
3.有下列叙述:
①“a>b”的反面是“a
②“x=y”的反面是“x>y或x③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;
④“三角形最多有一个钝角”的反面是“三角形没有钝角”.
其中正确的叙述有 ( )
A.0个 B.1个
C.2个 D.3个
4.用反证法证明命题:“a、b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为 ( )
A.a,b都能被5整除
B.a,b都不能被5整除
C.a,b不都能被5整除
D.a不能被5整除
5.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0有有理根,那么a,b,c中存在偶数”时,否定结论应为 ( )
A.a,b,c都是偶数
B.a,b,c都不是偶数
C.a,b,c中至多一个是偶数
D.至多有两个偶数
6.“任何三角形的外角都至少有两个钝角”的否定应是___________________________.
7.用反证法证明命题“若a2+b2=0,则a,b全为0(a、b为实数)”,其反设为
__________________.
二、能力提升
8.已知x1>0,x1≠1且xn+1=(n=1,2,…),试证:“数列{xn}对任意的正整数n都满足xn>xn+1”,当此题用反证法否定结论时应为 ( )
A.对任意的正整数n,有xn=xn+1
B.存在正整数n,使xn=xn+1
C.存在正整数n,使xn≥xn+1
D.存在正整数n,使xn≤xn+1
9.设a,b,c都是正数,则三个数a+,b+,c+( )
A.都大于2
B.至少有一个大于2
C.至少有一个不小于2
D.至少有一个不大于2
10.若下列两个方程x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是________.
11.已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,
求证:a,b,c,d中至少有一个是负数.
12.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不可能都大于.
三、探究与拓展
13.已知函数f(x)=ax+ (a>1),用反证法证明方程f(x)=0没有负数根.
答案
1.D 2.D 3.B 4.B 5.B
6.存在一个三角形,其外角最多有一个钝角
7.a,b不全为0
8.D 9.C
10.a≤-2或a≥-1
11.证明 假设a,b,c,d都是非负数,
因为a+b=c+d=1,
所以(a+b)(c+d)=1,
又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd>1,这与上式相矛盾,所以a,b,c,d中至少有一个是负数.
12.证明 假设三个式子同时大于,
即(1-a)b>,(1-b)c>,(1-c)a>,
三式相乘得(1-a)a·(1-b)b·(1-c)c>,①
又因为0所以0同理00所以(1-a)a·(1-b)b·(1-c)c≤②
①与②矛盾,所以假设不成立,故原命题成立.
13.证明 假设方程f(x)=0有负数根,设为x0(x0≠-1).则有x0<0,且f(x0)=0.
∴ax0+=0?ax0=-.
∵a>1,∴0解上述不等式,得故方程f(x)=0没有负数根.