九江六中2019年新初三上第三章测试卷2019.9.8
一、选择题(20分)
1.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )
A. B. C. D.
2、三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( )
A. B. C. D.
3.甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )
A. B. C. D.
4、从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )
A. B. C. D.
5、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. B. C. D.
二、填空题(24分)
6、如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是
7、荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是 .
8、从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是 .
9、一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 .
10、掷两枚质地均匀的骰子,其点数之和大于10的概率为 .
11、在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是 .
三、解答题(56分)
12、在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.
13、甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;
(2)求出两个数字之和能被3整除的概率.
14、甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
15、有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择A部电影的概率;
(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).
16、锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).
(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是 .
(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是 .
(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺序通关的概率.
17、如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).
18、某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:
(1)请将条形统计图补全;
(2)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.
答案解析
1.【解答】解:由题意可得,所有的可能性为:
∴至少有两枚硬币正面向上的概率是: =,
故选D.
2、【解答】解:画树状图得:
∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,
∴两张卡片上的数字恰好都小于3概率==.
故选A.
3.【解答】解:如图所示:
,
一共有4种可能,取出的两个小球上都写有数字2的有1种情况,
故取出的两个小球上都写有数字2的概率是:.故选:C.
4、【解答】解:列表如下:
积 ﹣2 ﹣1 2
﹣2 2 ﹣4
﹣1 2 ﹣2
2 ﹣4 ﹣2
由表可知,共有6种等可能结果,其中积为正数的有2种结果,
所以积为正数的概率为=,
故选:C.
5、【解答】解:将三个小区分别记为A、B、C,
列表如下:
A B C
A (A,A) (B,A) (C,A)
B (A,B) (B,B) (C,B)
C (A,C) (B,C) (C,C)
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为=,
故选:C.
6、【解答】解:画树状图得:
∵共有4种等可能的结果,蚂蚁从A出发到达E处的2种情况,
∴蚂蚁从A出发到达E处的概率是: =.
故答案为:.
7、【解答】解:画树状图如下:
由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种,
所以抽到一男一女的概率为P(一男一女)=,
故答案为:.
8、【解答】解:根据题意画图如下:
共有12种情况,
∵正比例函数y=kx的图象经过第三、第一象限,
∴k>0,
∵k=mn,
∴mn>0,
∴符合条件的情况数有2种,
∴正比例函数y=kx的图象经过第三、第一象限的概率是=;
故答案为:.
9、【解答】解:列表得,
黑1 黑2 白1 白2
黑1 黑1黑1 黑1黑2 黑1白1 黑1白2
黑2 黑2黑1 黑2黑2 黑2白1 黑2白2
白1 白1黑1 白1黑2 白1白1 白1白2
白2 白2黑1 白2黑2 白2白1 白2白2
∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,
∴两次摸出的小球都是白球的概率为: =,
故答案为:.
10、【解答】解:列表如下:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,
∴点数之和大于10的概率为:.
故答案为:.
11、【解答】解:设四个小组分别记作A、B、C、D,
画树状图如图:
由树状图可知,共有16种等可能结果,其中小明、小亮被分到同一个小组的结果由4种,
∴小明和小亮同学被分在一组的概率是=,
故答案为:.
12、【解答】解:画树状图得:
∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,
∴两次摸到的球都是红球的概率=.
13、【解答】解:(1)树状图如下:
(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,
∴两个数字之和能被3整除的概率为,
即P(两个数字之和能被3整除)=.
14、【解答】解:(1)所有可能出现的结果如图:
从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;
(2)不公平.
从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,
所以甲获胜的概率为:,乙获胜的概率为:.
∵>,
∴甲获胜的概率大,游戏不公平.
15、【解答】解:(1)甲选择A部电影的概率=;
(2)画树状图为:
共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,
所以甲、乙、丙3人选择同1部电影的概率==.
16、【解答】解:(1)第一道肯定能对,第二道对的概率为,
所以锐锐通关的概率为;
故答案为:;
(2)锐锐两次“求助”都在第二道题中使用,
则第一道题对的概率为,第二道题对的概率为,
所以锐锐能通关的概率为×=;
故答案为:;
(3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题的3个选项,
树状图如图所示:
共有6种等可能的结果,锐锐顺利通关的只有1种情况,
∴锐锐顺利通关的概率为:.
17、【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,
∴指针所指扇形中的数字是奇数的概率为,
故答案为:;
(2)列表如下:
1 2 3
1 (1,1) (2,1) (3,1)
2 (1,2) (2,2) (3,2)
3 (1,3) (2,3) (3,3)
由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,
所以这两个数字之和是3的倍数的概率为=.
18、【解答】解:(1)调查的总人数为10÷25%=40(人),
所以一等奖的人数为40﹣8﹣6﹣12﹣10=4(人),
条形统计图为:
(2)画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)
共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,
所以所选出的两人中既有七年级又有九年级同学的概率==.