高中数学必修四:1.3.1三角函数的诱导公式(一)(教、学案)

文档属性

名称 高中数学必修四:1.3.1三角函数的诱导公式(一)(教、学案)
格式 zip
文件大小 77.0KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-09-11 10:31:25

图片预览

文档简介

1. 3.1三角函数的诱导公式(一)
一、教学目标:
1.借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题
2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、重点与难点:
重点:四组诱导公式的记忆、理解、运用。
难点:四组诱导公式的推导、记忆及符号的判断;
三、学法与教学用具:
(1)、与学生共同探讨,应用数学解决现实问题;
(2)、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.
四、教学过程:
创设情境:我们知道,任一角都可以转化为终边在内的角,如何进一步求出它的三角函数值?
我们对范围内的角的三角函数值是熟悉的,那么若能把内的角的三角函数值转化为求锐角的三角函数值,则问题将得到解决,这就是数学化归思想
研探新知
1. 诱导公式的推导
由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:
(公式一)
诱导公式(一)的作用:把任意角的正弦、余弦、正切化为之间角的正弦、余弦、正切。
【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成
,是不对的
【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到角后,又如何将角间的角转化到角呢?
除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。那么它们的三角函数值有何关系呢?
若角的终边与角的终边关于轴对称,那么与的三角函数值之间有什么关系?特别地,角与角的终边关于轴对称,由单位圆性质可以推得:
(公式二)
特别地,角与角的终边关于轴对称,故有
(公式三)
特别地,角与角的终边关于原点对称,故有
(公式四)
所以,我们只需研究的同名三角函数的关系即研究了的关系了。
【说明】:①公式中的指任意角;②在角度制和弧度制下,公式都成立;
③记忆方法: “函数名不变,符号看象限”;
【方法小结】:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是:
①化负角的三角函数为正角的三角函数;
②化为内的三角函数;
③化为锐角的三角函数。
可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值)。
2、例题分析:
例1 求下列三角函数值:(1); (2).
分析:先将不是范围内角的三角函数,转化为范围内的角的三角
函数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化到范围内
角的三角函数的值。
解:(1)(诱导公式一)
(诱导公式二)

(2)(诱导公式三)
(诱导公式一)
(诱导公式二)

方法小结:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是:
①化负角的三角函数为正角的三角函数;
②化为内的三角函数;
③化为锐角的三角函数。
可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值)。
例2 化简.
解:原式

3 课堂练习:
(1).若,则的取值集合为 ( )
A. B.
C. D.
(2).已知那么 ( )
A. B. C. D.
(3).设角的值等于 ( )
A. B.- C. D.-
(4).当时,的值为 ( )
A.-1 B.1 C.±1 D.与取值有关
(5).设为常数),且
那么 A.1 B.3 C.5 D.7 ( )
(6).已知则 .
4、课堂练习答案:
(1)、D (2)、C (3)、C (4)、A (5)、C (6)、 2
5、作业:根据情况安排
6 板书设计:
三角函数的诱导公式(一)
基本概念: 例1 课堂练习
例2
1.3.1三角函数的诱导公式(一)
课前预习学案
预习目标:
回顾记忆各特殊锐角三角函数值,在单位圆中正确识别三种三角函数线。
预习内容:
1、背诵30度、45度、60度角的正弦、余弦、正切值;
2、在平面直角坐标系中做出单位圆,并分别找出任意角的正弦线、余弦线、正切线。
提出疑惑:
我们知道,任一角都可以转化为终边在内的角,如何进一步求出它的三角函数值?
我们对范围内的角的三角函数值是熟悉的,那么若能把内的角的三角函数值转化为求锐角的三角函数值,则问题将得到解决。那么如何实现这种转化呢?
课内探究学案
一、学习目标:
(1).借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题
(2).通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、重点与难点:
重点:四组诱导公式的记忆、理解、运用。
难点:四组诱导公式的推导、记忆及符号的判断;
三、学习过程:
(一)研探新知
1. 诱导公式的推导
由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:
(公式一)
诱导公式(一)的作用:把任意角的正弦、余弦、正切化为之间角的正弦、余弦、正切。
【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成
,是不对的
【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到角后,又如何将角间的角转化到角呢?
除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。那么它们的三角函数值有何关系呢?
若角的终边与角的终边关于轴对称,那么与的三角函数值之间有什么关系?特别地,角与角的终边关于轴对称,由单位圆性质可以推得:
(公式二)
特别地,角与角的终边关于轴对称,故有
(公式三)
特别地,角与角的终边关于原点对称,故有
(公式四)
所以,我们只需研究的同名三角函数的关系即研究了的关系了。
【说明】:①公式中的指任意角;②在角度制和弧度制下,公式都成立;
③记忆方法: “函数名不变,符号看象限”;
【方法小结】:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是:
① ;
② ;
③ 。
可概括为:“ ”(有时也直接化到锐角求值)。
(二)、例题分析:
例1 求下列三角函数值:(1); (2).
分析:先将不是范围内角的三角函数,转化为范围内的角的三角
函数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化到范围内
角的三角函数的值。
例2 化简.
(三) 课堂练习:
(1).若,则的取值集合为 ( )
A. B.
C. D.
(2).已知那么 ( )
A. B. C. D.
(3).设角的值等于 ( )
A. B.- C. D.-
(4).当时,的值为 ( )
A.-1 B.1 C.±1 D.与取值有关
(5).设为常数),且
那么 A.1 B.3 C.5 D.7 ( )
(6).已知则 .
课后练习与提高
一、选择题
1.已知,则值为( )
A. B. — C. D. —
2.cos (+α)= —,<α<,sin(-α) 值为( )
A. B. C. D. —
3.化简:得( )
A. B. C. D.±
4.已知,,那么的值是( )
A B C D
二、填空题
5.如果且那么的终边在第 象限
6.求值:2sin(-1110o) -sin960o+=      .
三、解答题
7.设,求的值.
8.已知方程sin(? ? 3?) = 2cos(? ? 4?),求的值。
∴  ==
8.解: ∵sin(? ? 3?) = 2cos(? ? 4?)
∴? sin(3? ? ?) = 2cos(4? ? ?)
∴? sin(? ? ?) = 2cos(? ?)
∴sin? = ? 2cos? 且cos? ? 0