高中选修1-2教案 1.1回归分析的基本思想及其初步应用(二)

文档属性

名称 高中选修1-2教案 1.1回归分析的基本思想及其初步应用(二)
格式 zip
文件大小 11.7KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-09-13 11:27:43

图片预览

文档简介

==================资料简介======================
1.1回归分析的基本思想及其初步应用(二)
教学目标:
1、知识与技能:会建立回归模型,进而学习相关指数(相关系数r?、总偏差平方和、随机误差的效应即残差、残差平方和、回归平方和、相关指数R2、残差分析)
2、过程与方法:通过学习会求上述的相关指数?
3、情感态度价值观:从实际问题发现已有知识不足,激发好奇心、求知欲。培养勇于求知的良好个性品质。
教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
教学难点::了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
教学过程:
一、复习准备:
1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.
2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
二、讲授新课:[
1. 教学总偏差平方和、残差平方和、回归平方和:
(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即错误!未找到引用源。.
残差平方和:回归值与样本值差的平方和,即错误!未找到引用源。.
回归平方和:相应回归值与样本均值差的平方和,即错误!未找到引用源。.
(2)学习要领:①注意错误!未找到引用源。、错误!未找到引用源。、错误!未找到引用源。的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即错误!未找到引用源。;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数错误!未找到引用源。来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 错误!未找到引用源。的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.
2. 教学例题:
例2 关于错误!未找到引用源。与错误!未找到引用源。有如下数据:
  错误!未找到引用源。
  2
  4
  5
  6[
  8

  错误!未找到引用源。
  30
  40
  60
  50[
  70[

为了对错误!未找到引用源。、错误!未找到引用源。两个变量进行统计分析,现有以下两种线性模型:错误!未找到引用源。,错误!未找到引用源。,试比较哪一个模型拟合的效果更好.
================================================
压缩包内容:
高中选修1-2教案 1.1回归分析的基本思想及其初步应用(二).doc