2020版高中数学第二章统计2.2.2用样本的数字特征估计总体的数字特征学案(含解析)新人教A版必修3

文档属性

名称 2020版高中数学第二章统计2.2.2用样本的数字特征估计总体的数字特征学案(含解析)新人教A版必修3
格式 zip
文件大小 322.0KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-09-14 20:41:15

图片预览

文档简介

==================资料简介======================
2.2.2 用样本的数字特征估计总体的数字特征
学习目标 1.理解样本数据标准差的意义和作用,学会计算数据的标准差.2.会用样本的基本数字特征来估计总体的基本数字特征.

知识点一 众数、中位数、平均数
众数、中位数、平均数定义
(1)众数:一组数据中出现次数最多的数.
(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.
(3)平均数:如果n个数x1,x2,…,xn,那么=(x1+x2+…+xn)叫做这n个数的平均数.
思考 平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?
答案 平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.
知识点二 方差、标准差
标准差、方差的概念及计算公式
(1)标准差是样本数据到平均数的一种平均距离,一般用s表示.
s=.
(2)标准差的平方s2叫做方差.
s2=[(x1-)2+(x2-)2+…+(xn-)2](xn是样本数据,n是样本容量,是样本平均数).
(3)标准差(或方差)越小,数据越稳定在平均数附近.s=0时,每一组样本数据均为.
知识拓展:平均数、方差公式的推广
(1)若数据x1,x2,…,xn的平均数为,那么mx1+a,
mx2+a,mx3+a,…,mxn+a的平均数是m+a.
(2)设数据x1,x2,…,xn的平均数为,方差为s2,则
①s2=[(x+x+…+x)-n2];
②数据x1+a,x2+a,…,xn+a的方差也为s2;
③数据ax1,ax2,…,axn的方差为a2s2;
④数据ax1+b,ax2+b,…,axn+b的方差也为a2s2,标准差为as.

1.中位数是一组数据中间的数.( × )
2.众数是一组数据中出现次数最多的数.( √ )
3.一组数据的标准差越小,数据越稳定,且稳定在平均数附近.( √ )
4.一组数据的标准差不大于极差.( √ )

题型一 众数、中位数、平均数的计算
例1 (1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为(  )
A.85,85,85 B.87,85,86
C.87,85,85 D.87,85,90
(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).

已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为(  )
A.2,5B.5,5C.5,8D.8,8
答案 (1)C (2)C
解析 (1)平均数为=87,众数为85,中位数为85.
(2)结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.
由于甲组数据的中位数为15=10+x,所以x=5.又乙组数据的平均数为=16.8,所以y=8,所以x,y的值分别为5,8.
反思感悟 平均数、众数、中位数的计算方法
平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.
跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:
成绩(单位:m)
1.50
1.60
1.65
1.70
1.75
1.80
1.85
1.90

人数
2
3
2
3
4
1
1
1


分别求这些运动员成绩的众数、中位数与平均数.
解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70.这组数据的平均数是=(1.50×2+1.60×3+…+1.90×1)=≈1.69(m).
故17名运动员成绩的众数、中位数、平均数依次为1.75m,1.70m,1.69m.
题型二 标准差、方差的计算及应用
例2 甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是:
甲:8,6,7,8,6,5,9,10,4,7;
乙:6,7,7,8,6,7,8,7,9,5.
(1)分别计算以上两组数据的平均数;
(2)分别求出两组数据的方差;
(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适?
解 (1)甲=×(8+6+7+8+6+5+9+10+4+7)=7(环),
乙=×(6+7+7+8+6+7+8+7+9+5)=7(环).
(2)由方差公式s2=[(x1-)2+(x2-)2+…+(xn-)2],得s=3,s=1.2.
(3)甲=乙,说明甲、乙两战士的平均水平相当.
又s>s说明甲战士射击情况波动比乙大.
因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛.
反思感悟 (1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.
(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.
(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.
跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg):
甲:102 101 99 98 103 98 99
乙:110 115 90 85 75 115 110
(1)这种抽样方法是哪一种方法?
(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定.
解 (1)采用的抽样方法是:系统抽样.
(2)甲=(102+101+99+98+103+98+99)=100;
乙=(110+115+90+85+75+115+110)=100;
s=[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-100)2]
=(4+1+1+4+9+4+1)≈3.43;
s=[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]
=(100+225+100+225+625+225+100)
≈228.57.
所以s<s,故甲车间产品较稳定.

频率分布直方图与数字特征的综合应用
典例 某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.

(1)求这次测试数学成绩的众数;
(2)求这次测试数学成绩的中位数.
解 (1)知众数为=75.
(2)设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.
引申探究
1.若本例条件不变,求数学成绩的平均分.
解 由题干图知这次数学成绩的平均分为×0.005×10+×0.015×10+×0.02×10+×0.03×10+×0.025×10+×0.005×10=72.
2.本例条件不变,求80分以上(含80分)的学生人数.
解 [80,90)分的频率为0.025×10=0.25,
频数为0.25×80=20.
[90,100]分的频率为0.005×10=0.05,
频数为0.05×80=4.
所以80分以上的学生人数为20+4=24.
[素养评析] (1)利用频率分布直方图估计总体数字特征
①众数是最高的矩形的底边中点的横坐标;
②中位数左右两侧直方图的面积相等;
③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.
(2)利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.
(3)在解决本题时,需要选择运算方法,掌握运算法则,求得运算结果,并根据结果进行合理推断,获得结论.这些都是数学核心素养的内含所在.

1.某市2017年各月的平均气温(℃)数据的茎叶图如图:

则这组数据的中位数是(  )
A.19 B.20
C.21.5 D.23
答案 B
解析 由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.
2.下列关于平均数、中位数、众数的说法中正确的一个是(  )
A.中位数可以准确地反映出总体的情况
B.平均数可以准确地反映出总体的情况
C.众数可以准确地反映出总体的情况
D.平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况
答案 D
3.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得的数据,则A,B两样本的下列数字特征对应相同的是(  )
A.众数B.平均数C.中位数D.标准差
答案 D
4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a1,a2,则一定有(  )

A.a1>a2
B.a2>a1
C.a1=a2
D.a1,a2的大小与m的值有关
答案 B
解析 由茎叶图知,
a1=80+=84,
a2=80+=85,故选B.
5.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为________.
答案 16
解析 设样本数据x1,x2,…,x10的标准差为s,则s=8,
可知数据2x1-1,2x2-1,…,2x10-1的标准差为2s=16.

1.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.
2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.
3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.
================================================
压缩包内容:
2020版高中数学第二章统计2.2.2用样本的数字特征估计总体的数字特征学案(含解析)新人教a版必修3.docx