首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教B版(2019)
必修 第一册
第二章 等式与不等式
2.2不等式
2.2.4均值不等式及其应用
(新教材)人教B版必修第一册(课件2份+学案+课时作业)2.2.4 均值不等式及其应用
文档属性
名称
(新教材)人教B版必修第一册(课件2份+学案+课时作业)2.2.4 均值不等式及其应用
格式
zip
文件大小
938.9KB
资源类型
教案
版本资源
人教B版(2019)
科目
数学
更新时间
2019-09-14 21:31:47
点击下载
文档简介
2.2.4 均值不等式及其应用
最新课程标准:掌握基本不等式≤(a,b≥0).结合具体实例,能用基本不等式解决简单的最大值或最小值问题.
知识点一 数轴上两点之间的距离公式和中点坐标公式
1.数轴上两点之间的距离公式
一般地,如果A(a),B(b),则线段AB的长为AB=|a-b|.
2.中点坐标公式
如果线段AB的中点M的坐标为x.若a
则M为x=.
知识点二 基本不等式
(1)重要不等式:对于任意实数a、b,都有a2+b2≥2ab,当且仅当a=b时,等号成立.
(2)基本不等式:≤(a>0,b>0),当且仅当a=b时,等号成立.其中和分别叫做正数a,b的算术平均数和几何平均数.
基本不等式≤(a,b∈R+)的应用:
(1)两个正数的和为定值时,它们的积有最大值,即若a>0,b>0,且a +b=M,M为定值,则ab≤,当且仅当a=b时等号成立.即:a +b=M,M为定值时,(ab)max=.
(2)两个正数的积为定值时,它们的和有最小值,即若a>0,b>0,且ab =P,P为定值,则a +b≥2,当且仅当a =b时等号成立.
[基础自测]
1.已知a,b∈R,且ab>0,则下列结论恒成立的是( )
A.a2+b2>2ab B.a+b≥2
C.+> D.+≥2
解析:对于A,当a=b时,a2+b2=2ab,所以A错误;对于B,C,虽然ab>0,只能说明a,b同号,当a,b都小于0时,B,C错误;对于D,因为ab>0,所以>0,>0,所以+≥2 ,即+≥2成立.
答案:D
2.若a>1,则a+的最小值是( )
A.2 B.a
C. D.3
解析:a>1,所以a-1>0,
所以a+=a-1++1≥2+1=3.
当且仅当a-1=即a=2时取等号.
答案:D
3.下列不等式中,正确的是( )
A.a+≥4 B.a2+b2≥4ab
C.≥ D.x2+≥2
解析:a<0,则a+≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错,a=4,b=16,则<,故C错误;由基本不等式可知D项正确.
答案:D
4.已知x,y都是正数.
(1)如果xy=15,则x+y的最小值是________.
(2)如果x+y=15,则xy的最大值是________.
解析:(1)x+y≥2=2,即x+y的最小值是2;当且仅当x=y=时取最小值.
(2)xy≤2=2=,
即xy的最大值是.
当且仅当x=y=时xy取最大值.
答案:(1)2 (2)
第1课时 基本不等式
题型一 对基本不等式的理解[经典例题]
例1 (1)下列不等式中,不正确的是( )
A.a2+b2≥2|a||b|
B.≥2a-b(b≠0)
C.2≥-1(b≠0)
D.2(a2+b2)≥(a+b)2
(2)给出下列命题:
①若x∈R,则x+≥2;
②若a<0,b<0,则ab+≥2;
③不等式+≥2成立的条件是x>0且y>0.其中正确命题的序号是________.
【解析】 (1)A中,a2+b2=|a|2+|b|2≥2|a||b|,所以A正确.由a2+b2≥2ab,得a2≥2ab-b2.B中,当b<0时,≤2a-b,所以B不正确.C中,b≠0,则2≥-1,所以C正确.D中,由a2+b2≥2ab,得2(a2+b2)≥a2+b2+2ab=(a+b)2,所以D正确.
1.举反例、基本不等式?逐个判断.
2.明确基本不等式成立的条件?逐个判断.
【答案】(1)B
【解析】(2)只有当x>0时,才能由基本不等式得到x+≥2=2,故①错误;当a<0,b<0时,ab>0,由基本不等式可得ab+≥2=2,故②正确;由基本不等式可知,当>0,>0时,有+≥2=2成立,这时只需x与y同号即可,故③错误.
基本不等式的两个关注点
(1)正数:指式子中的a,b均为正数,
(2)相等:即“=”成立的条件.
【答案】(2)②
跟踪训练1 设0
A.a
B.a<<
C.a<
D.
解析:0
答案:B
利用基本不等式时先要确定成立的条件,有的要适当变形处理.
题型二 利用基本不等式求最值[教材P70例1]
例2 已知x>0,求y=x+的最小值,并说明x为何值时y取得最小值.
【解析】 因为x>0,所以根据均值不等式有
x+≥2=2,
其中等号成立当且仅当x=,即x2=1,解得x=1或x=-1(舍).
因此x=1时,y取得最小值2.
教材反思
1.利用基本不等式求最值的策略
2.通过消元法利用基本不等式求最值的方法
消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.
特别提醒:利用基本不等式求函数最值,千万不要忽视等号成立的条件.
跟踪训练2 (1)已知x>0,y>0,且x+y=8,则 (1+x)(1+y)的最大值为( )
A.16 B.25
C.9 D.36
(2)若正实数x,y满足x+2y+2xy-8=0,则x+2y的最小值( )
A.3 B.4
C. D.
解析:(1)因为x>0,y>0,且x+y=8,
所以(1+x)(1+y)=1+x+y+xy=9+xy≤9+2=9+42=25,
因此当且仅当x=y=4时,
(1+x)·(1+y)取最大值25.
(2)因为正实数x,y满足x+2y+2xy-8=0,
所以x+2y+2-8≥0.
设x+2y=t>0,
所以t+t2-8≥0,
所以t2+4t-32≥0,
即(t+8)(t-4)≥0,
所以t≥4,
故x+2y的最小值为4.
答案:(1)B (2)B
1.展开(1+x)(1+y)?将x+y=8代入?用基本不等式求最值.
2.利用基本不等式得x+2y+2-8≥0?设x+2y=t>0,解不等式求出x+2y的最小值.
易错点 利用基本不等式求最值
例 若正数x,y满足x+3y=5xy,则3x+4y的最小值是( )
A. B.
C.5 D.6
【错解】 由x+3y=5xy?5xy≥2,
因为x>0,y>0,所以25x2y2≥12xy,即xy≥.
所以3x+4y≥2≥2=,
当且仅当3x=4y时取等号,
故3x+4y的最小值是.
错误的根本原因是忽视了两次使用基本不等式,等号成立的条件必须一致.
【正解】 由x+3y=5xy可得+=1,所以3x+4y=(3x+4y)=+++≥+2=+=5,
当且仅当x=1,y=时取等号,
故3x+4y的最小值是5.
【答案】 C
课时作业 13
一、选择题
1.给出下列条件:①ab>0;②ab<0;③a>0,b>0;④a<0,b<0,其中能使+≥2成立的条件有( )
A.1个 B.2个
C.3个 D.4个
解析:当,均为正数时,+≥2,故只须a、b同号即可,∴①③④均可以.
答案:C
2.已知t>0,则y=的最小值为( )
A.-1 B.-2
C.2 D.-5
解析:依题意得y=t+-4≥2-4=-2,等号成立时t=1,即函数y=(t>0)的最小值是-2.
答案:B
3.若a≥0,b≥0,且a+b=2,则( )
A.ab≤ B.ab≥
C.a2+b2≥2 D.a2+b2≤3
解析:∵a2+b2≥2ab,
∴(a2+b2)+(a2+b2)≥(a2+b2)+2ab,
即2(a2+b2)≥(a+b)2=4,
∴a2+b2≥2.
答案:C
4.若a,b都是正数,则的最小值为( )
A.7 B.8
C.9 D.10
解析:因为a,b都是正数,所以=5++≥5+2=9,当且仅当b=2a>0时取等号.
答案:C
二、填空题
5.不等式a2+1≥2a中等号成立的条件是________.
解析:当a2+1=2a,即(a-1)2=0时“=”成立,此时a=1.
答案:a=1
6.设a+b=M(a>0,b>0),M为常数,且ab的最大值为2,则M等于________.
解析:因为a+b=M(a>0,b>0),
由基本不等式可得,ab≤2=,
因为ab的最大值为2,
所以=2,M>0,所以M=2.
答案:2
7.已知x>0,y>0,且+=1,则3x+4y的最小值是________.
解析:因为x>0,y>0,+=1,
所以3x+4y=(3x+4y)=13++≥13+3×2=25(当且仅当x=2y=5时取等号),
所以(3x+4y)min=25.
答案:25
三、解答题
8.已知x<,求f(x)=4x-2+的最大值.
解析:因为x<,所以4x-5<0,5-4x>0.
f(x)=4x-5+3+=-+3
≤-2+3=1.
当且仅当5-4x=时等号成立,
又5-4x>0,
所以5-4x=1,x=1.
所以f(x)max=f(1)=1.
9.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,求a的值.
解析:因为f(x)=4x+≥2=4,
当且仅当4x=,即4x2=a时,f(x)取得最小值.
又因为x=3,所以a=4×32=36.
[尖子生题库]
10.已知x∈,求函数y=+的最小值.
解析:y=+=·(2x+1-2x)=10+2·+8·,
而x∈,2·+8·≥2=8,
当且仅当2·=8·,
即x=∈时取到等号,则y≥18,
所以函数y=+的最小值为18.
课件26张PPT。第1课时 基本不等式 第2课时 基本不等式的应用
型一 利用基本不等式证明不等式[经典例题]
例1 已知a、b、c>0,求证:++≥a+b+c.
【解析】 ∵a,b,c,,,均大于0,
∴+b≥2=2a.
当且仅当=b时等号成立.
+c≥2=2b.
当且仅当=c时等号成立.
+a≥2=2c,
当且仅当=a时等号成立.
相加得+b++c++a≥2a+2b+2c,
∴++≥a+b+c.
→→→→
方法归纳
(1)在利用a+b≥2时,一定要注意是否满足条件a>0,b>0.
(2)在利用基本不等式a+b≥2或≥(a>0,b>0)时要注意对所给代数式通过添项配凑,构造符合基本不等式的形式.
(3)另外,在解题时还要注意不等式性质和函数性质的应用.
跟踪训练1 已知x>0,y>0,z>0.
求证:≥8.
证明:因为x>0,y>0,z>0,
所以+≥>0,
+≥>0,
+≥>0,
所以≥=8,当且仅当x=y=z时等号成立.
分别对+,+,+用基本不等式?同向不等式相乘.
题型二 利用基本不等式解决实际问题
[教材P71例3]
例2 (1)已知矩形的面积为100,则这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?
(2)已知矩形的周长为36,则这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?
【分析】 在(1)中,矩形的长与宽的积是一个常数,要求长与宽之和的两倍的最小值;在(2)中,矩形的长与宽之和的两倍是一个常数,要求长与宽的积的最大值.
【解析】 (1)设矩形的长与宽分别为x与y,依题意得xy=100.
因为x>0,y>0,所以≥=10,
所以2(x+y)≥40.
当且仅当x=y时,等号成立,由可知此时
x=y=10.
因此,当矩形的长和宽都是10时,它的周长最短,最短周长为40.
(2)设矩形的长与宽分别为x与y,依题意得2(x+y)=36,即x+y=18.
因为x>0,y>0,所以=≥,
因此≤9,即xy≤81.
当且仅当x=y时,等号成立,由可知此时
x=y=9.
因此,当矩形的长和宽都是9时,它的面积最大,最大面积为81.
两个正数的积为常数时,它们的和有最小值;
两个正数的和为常数时,它们的积有最大值.
教材反思
利用基本不等式解决实际问题的步骤
解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:
(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数.
(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题.
(3)在定义域内,求出函数的最大值或最小值.
(4)正确写出答案.
跟踪训练2 某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.
(1)问捕捞几年后总盈利最大,最大是多少?
(2)问捕捞几年后的平均利润最大,最大是多少?
解析:(1)设该船捕捞n年后的总盈利y万元.则
y=50n-98-
=-2n2+40n-98=-2(n-10)2+102,
∴当捕捞10年后总盈利最大,最大是102万元.
(2)年平均利润为
=-2≤-2=12,
当且仅当n=,即n=7时上式取等号.
所以,当捕捞7年后年平均利润最大,最大是12万元.
1.盈利等于总收入-支出,注意支出,由两部分组成.
2.利用基本不等式求平均利润.
课时作业 14
一、选择题
1.已知a,b,c,是正实数,且a+b+c=1,则++的最小值为( )
A.3 B.6
C.9 D.12
解析:∵a+b+c=1,∴++=(a+b+c)=3++++++≥3+2+2+2=9,当且仅当a=b=c=时,等号成立.
答案:C
2.(-6≤a≤3)的最大值为( )
A.9 B.
C.3 D.
解析:因为-6≤a≤3,所以3-a≥0,a+6≥0,则由基本不等式可知,≤=,当且仅当3-a=a+6,即a=-时,等号成立.
答案:B
3.将一根铁丝切割成三段做一个面积为4.5 m2的直角三角形框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )
A.9.5 m B.10 m
C.10.5 m D.11 m
解析:不妨设直角三角形两直角边长分别为a,b,则ab=9,注意到直角三角形的周长为l=a+b+,从而l=a+b+≥2+=6+3≈10.24,当且仅当a=b=3时,l取得最小值.从最节俭的角度来看,选择10.5 m.
答案:C
4.已知函数y=x-4+(x>-1),当x=a时,y取得最小值b,则a+b=( )
A.-3 B.2
C.3 D.8
解析:y=x-4+=x+1+-5.由x>-1,得x+1>0,>0,所以由基本不等式得y=x+1+-5≥2-5=1,当且仅当x+1=,即x=2时取等号,所以a=2,b=1,a+b=3.
答案:C
二、填空题
5.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则该公司年平均利润的最大值是________万元.
解析:每台机器运转x年的年平均利润为=18-,而x>0,故≤18-2=8,当且仅当x=5时等号成立,此时年平均利润最大,最大值为8万元.
答案:8
6.若正实数x,y满足2x+y+6=xy,则xy的最小值是________.
解析:设=t(t>0),由xy=2x+y+6≥2+6,即t2≥2t+6,(t-3)(t+)≥0,∴t≥3,则xy≥18,当且仅当2x=y,2x+y+6=xy,即x=3,y=6时等号成立,∴xy的最小值为18.
答案:18
7.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价%,若p>q>0,则提价多的方案是________.
解析:设原价为1,则提价后的价格为
方案甲:(1+p%)(1+q%),
方案乙:2,
因为≤=1+%,
且p>q>0,
所以<1+%,
即(1+p%)(1+q%)<2,
所以提价多的方案是乙.
答案:乙
三、解答题
8.已知a>0,b>0,a+b=1,求证:≥9.
证明:∵a>0,b>0,a+b=1,
∴1+=1+=2+,
同理,1+=2+,
∴
=
=5+2≥5+4=9.
∴≥9(当且仅当a=b=时等号成立).
9.桑基鱼塘是广东省珠江三角洲一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S平方米,其中a?:b=1?:2.
(1)试用x,y表示S;
(2)若要使S最大,则x,y的值各为多少?
解析:(1)由题可得,xy=1 800,b=2a,则y=a+b+6=3a+6,S=(x-4)a+(x-6)b=(3x-16)a=(3x-16)=1 832-6x-y(x>6,y>6,xy=1 800).
(2)方法一 S=1 832-6x-y≤1 832-2=1 832-480=1 352,
当且仅当6x=y,xy=1 800,即x=40,y=45时,S取得最大值1 352.
方法二 S=1 832-6x-×=1 832-≤1 832-2=1 832-480=1 352,
当且仅当6x=,即x=40时取等号,S取得最大值,此时y==45.
[尖子生题库]
10.已知a>b,ab=1,求证:a2+b2≥2(a-b).
证明:∵a>b,∴a-b>0,又ab=1,
∴===a-b+≥2=2,即≥2,即a2+b2≥2(a-b),当且仅当a-b=,即a-b=时取等号.
课件17张PPT。课时作业 13
一、选择题
1.给出下列条件:①ab>0;②ab<0;③a>0,b>0;④a<0,b<0,其中能使+≥2成立的条件有( )
A.1个 B.2个
C.3个 D.4个
解析:当,均为正数时,+≥2,故只须a、b同号即可,∴①③④均可以.
答案:C
2.已知t>0,则y=的最小值为( )
A.-1 B.-2
C.2 D.-5
解析:依题意得y=t+-4≥2-4=-2,等号成立时t=1,即函数y=(t>0)的最小值是-2.
答案:B
3.若a≥0,b≥0,且a+b=2,则( )
A.ab≤ B.ab≥
C.a2+b2≥2 D.a2+b2≤3
解析:∵a2+b2≥2ab,
∴(a2+b2)+(a2+b2)≥(a2+b2)+2ab,
即2(a2+b2)≥(a+b)2=4,
∴a2+b2≥2.
答案:C
4.若a,b都是正数,则的最小值为( )
A.7 B.8
C.9 D.10
解析:因为a,b都是正数,所以=5++≥5+2=9,当且仅当b=2a>0时取等号.
答案:C
二、填空题
5.不等式a2+1≥2a中等号成立的条件是________.
解析:当a2+1=2a,即(a-1)2=0时“=”成立,此时a=1.
答案:a=1
6.设a+b=M(a>0,b>0),M为常数,且ab的最大值为2,则M等于________.
解析:因为a+b=M(a>0,b>0),
由基本不等式可得,ab≤2=,
因为ab的最大值为2,
所以=2,M>0,所以M=2.
答案:2
7.已知x>0,y>0,且+=1,则3x+4y的最小值是________.
解析:因为x>0,y>0,+=1,
所以3x+4y=(3x+4y)=13++≥13+3×2=25(当且仅当x=2y=5时取等号),
所以(3x+4y)min=25.
答案:25
三、解答题
8.已知x<,求f(x)=4x-2+的最大值.
解析:因为x<,所以4x-5<0,5-4x>0.
f(x)=4x-5+3+=-+3
≤-2+3=1.
当且仅当5-4x=时等号成立,
又5-4x>0,
所以5-4x=1,x=1.
所以f(x)max=f(1)=1.
9.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,求a的值.
解析:因为f(x)=4x+≥2=4,
当且仅当4x=,即4x2=a时,f(x)取得最小值.
又因为x=3,所以a=4×32=36.
[尖子生题库]
10.已知x∈,求函数y=+的最小值.
解析:y=+=·(2x+1-2x)=10+2·+8·,
而x∈,2·+8·≥2=8,
当且仅当2·=8·,
即x=∈时取到等号,则y≥18,
所以函数y=+的最小值为18.
课时作业 14
一、选择题
1.已知a,b,c,是正实数,且a+b+c=1,则++的最小值为( )
A.3 B.6
C.9 D.12
解析:∵a+b+c=1,∴++=(a+b+c)=3++++++≥3+2+2+2=9,当且仅当a=b=c=时,等号成立.
答案:C
2.(-6≤a≤3)的最大值为( )
A.9 B.
C.3 D.
解析:因为-6≤a≤3,所以3-a≥0,a+6≥0,则由基本不等式可知,≤=,当且仅当3-a=a+6,即a=-时,等号成立.
答案:B
3.将一根铁丝切割成三段做一个面积为4.5 m2的直角三角形框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )
A.9.5 m B.10 m
C.10.5 m D.11 m
解析:不妨设直角三角形两直角边长分别为a,b,则ab=9,注意到直角三角形的周长为l=a+b+,从而l=a+b+≥2+=6+3≈10.24,当且仅当a=b=3时,l取得最小值.从最节俭的角度来看,选择10.5 m.
答案:C
4.已知函数y=x-4+(x>-1),当x=a时,y取得最小值b,则a+b=( )
A.-3 B.2
C.3 D.8
解析:y=x-4+=x+1+-5.由x>-1,得x+1>0,>0,所以由基本不等式得y=x+1+-5≥2-5=1,当且仅当x+1=,即x=2时取等号,所以a=2,b=1,a+b=3.
答案:C
二、填空题
5.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则该公司年平均利润的最大值是________万元.
解析:每台机器运转x年的年平均利润为=18-,而x>0,故≤18-2=8,当且仅当x=5时等号成立,此时年平均利润最大,最大值为8万元.
答案:8
6.若正实数x,y满足2x+y+6=xy,则xy的最小值是________.
解析:设=t(t>0),由xy=2x+y+6≥2+6,即t2≥2t+6,(t-3)(t+)≥0,∴t≥3,则xy≥18,当且仅当2x=y,2x+y+6=xy,即x=3,y=6时等号成立,∴xy的最小值为18.
答案:18
7.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价%,若p>q>0,则提价多的方案是________.
解析:设原价为1,则提价后的价格为
方案甲:(1+p%)(1+q%),
方案乙:2,
因为≤=1+%,
且p>q>0,
所以<1+%,
即(1+p%)(1+q%)<2,
所以提价多的方案是乙.
答案:乙
三、解答题
8.已知a>0,b>0,a+b=1,求证:≥9.
证明:∵a>0,b>0,a+b=1,
∴1+=1+=2+,
同理,1+=2+,
∴
=
=5+2≥5+4=9.
∴≥9(当且仅当a=b=时等号成立).
9.桑基鱼塘是广东省珠江三角洲一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S平方米,其中a?:b=1?:2.
(1)试用x,y表示S;
(2)若要使S最大,则x,y的值各为多少?
解析:(1)由题可得,xy=1 800,b=2a,则y=a+b+6=3a+6,S=(x-4)a+(x-6)b=(3x-16)a=(3x-16)=1 832-6x-y(x>6,y>6,xy=1 800).
(2)方法一 S=1 832-6x-y≤1 832-2=1 832-480=1 352,
当且仅当6x=y,xy=1 800,即x=40,y=45时,S取得最大值1 352.
方法二 S=1 832-6x-×=1 832-≤1 832-2=1 832-480=1 352,
当且仅当6x=,即x=40时取等号,S取得最大值,此时y==45.
[尖子生题库]
10.已知a>b,ab=1,求证:a2+b2≥2(a-b).
证明:∵a>b,∴a-b>0,又ab=1,
∴===a-b+≥2=2,即≥2,即a2+b2≥2(a-b),当且仅当a-b=,即a-b=时取等号.
点击下载
同课章节目录
第一章 集合与常用逻辑用语
1.1集合
1.2 常用逻辑用语
第二章 等式与不等式
2.1等式
2.2不等式
第三章 函数
3.1函数的概念与性质
3.2函数与方程、不等式之间的关系
3.3函数的应用(一)
3.4数学建模活动:决定苹果的最佳出售时间点
点击下载
VIP下载