高中数学必修一教案 第1章集合与函数第1课时 集合的含义及其表示

文档属性

名称 高中数学必修一教案 第1章集合与函数第1课时 集合的含义及其表示
格式 zip
文件大小 26.0KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-09-15 20:28:39

图片预览

文档简介

第1章 集合
第1课时 集合的含义及其表示
●三维目标
1.知识与技能
(1)初步理解集合的含义,知道常用数集及其记法.
(2)初步了解“属于”关系的意义,理解集合相等的含义.
(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.
2.过程与方法
(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手正确地理解集合.
(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.
(3)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合,掌握集合的表示方法.
3.情感、态度与价值观
(1)了解集合的含义,体会元素与集合的“属于”关系.
(2)在学习运用集合语言的过程中,增强学生认识事物的能力,初步培养学生实事求是、扎实、严谨的科学态度.
●重点、难点
重点:集合的含义及集合的表示方法.
难点:集合的特征性质和概念以及运用特征性质用描述法表示一些简单的集合.
●教学建议
1.关于集合含义的教学
建议教师在教学过程中通过大量具体实例,引导学生抽象出集合的含义,这样可以培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.
2.关于元素、集合及其关系的表示的教学
对于元素,集合的字母表示以及元素与集合之间的“属于”或“不属于”关系.建议教师让学生在具体运用中逐渐熟悉,对于常用数集的表示也要求学生记住.
3.关于列举法和描述法表示集合的教学
建议教师讲清元素不多的有限集常用列举法表示,无限集常用描述法表示,同时也要说明两种方法的优缺点.
课标解读
1.理解集合的含义,知道常用数集及其记法(重点).
2.了解属于关系和集合相等的意义(重点).
3.了解有限集、无限集、空集的意义.
4.掌握集合的表示方法——列举法、描述法和Venn图法,并能正确地表示一些简单的集合(重点、难点).
知识一
集合的概念
【问题导思】 观察下面的语句
(1)高一(2)班的女生; (2)方程x2-2=0的所有实根;
(3)2012年7月参加伦敦奥运会的代表团; (4)高一(2)班的所有帅哥;
(5)高一(2)班的好学生.
1.上面语句中女生、实根、代表团、帅哥、好学生哪些能被清晰的确定出来?【提示】 女生、实根、代表团.
2.以上语句中为什么有的不能确定?【提示】 因帅哥、好学生标准无法确定.
归纳:1.元素与集合的概念
一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素,简称元.
2.元素与集合的符号表示
通常用大写拉丁字母来表示集合,例如集合A、集合B等;通常用小写拉丁字母表示集合的元素,例如元素a,b等.
知识二
元素与集合的关系
【问题导思】 
某中学2013级高一年级的20个班构成一个集合,则高一(6)班是这个集合的元素吗?高二(3)班呢?
【提示】 高一(6)班是这个集合中的元素,高二(3)班不是.
知识归纳:1.元素与集合的关系
(1)属于(符号:∈),a是集合A中的元素.记作a∈A,读作“a属于A”.
(2)不属于(符号:或),a不是集合A中的元素,记作aA或aA.读作“a不属于A”.
2.常用数集及符号表示
数集名称
自然数集
正整数集
整数集
有理数集
实数集
符号表示
N
N*或N+
Z
Q
R
知识三
集合的表示方法
【问题导思】 观察下列集合
(1)中国的直辖市. (2)12的所有正因数.
(3)不等式x-2≥3的解集. (4)所有偶数的集合.
1.上述四个集合中的元素能分别一一列举出来吗?
【提示】 (1)、(2)中元素可以一一列举出来,(3)、(4)中元素不能一一列举,因为它们中的元素有无穷多个.
2.设(3)、(4)中元素为x,请用等式(或不等式)分别将它们表示出来.
【提示】 (3)中元素x≥5,(4)中元素x=2n,n∈N.
知识归纳:1.列举法
将集合的元素一一列举出来,并置于花括号“{ }”内.用这种方法表示集合,元素之间要用逗号分隔,
但列举时与元素的次序无关.
2.描述法
将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x) }的形式.
3.集合相等
如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两个集合相等.
知识四
集合的分类
【问题导思】 
你班的学生人数可数吗?你能举出一个不可数的集合吗?【提示】 可数 自然数集.
归纳;有限集:含有有限个元素的集合称为有限集.无限集:含有无限个元素的集合称为无限集.
空集:不含任何元素的集合称为空集,记作.
考点1
集合的有关概念
【例1】下列每组对象能否构成一个集合?
(1)所有的好人; (2)平面上到原点的距离等于2的点的全体;
(3)正三角形的全体; (4)方程x2=2的实数解;
(5)不等式x+1>0的所有实数解.
【思路探究】 看一组对象能否构成集合,关键是看这组对象是不是确定的.
【规律方法】
判断一组对象的全体能否构成集合,关键是看能否找到一个明确的标准,来判断整体中的每一个对象是不是确定的, 若元素是确定的,又能看做一个整体,便构成一个集合,否则,就不能构成集合,同时要兼顾集合中每个对象所代表的元素的无序性和互异性.
【变式训练】
下列对象:①不超过π的正整数;②高一数学课本中的所有难题;③所有的正三角形;④我国近代著名的数学家.其中能够构成集合的序号是________.
考点2
用列举法表示集合
【例2】用列举法表示下列集合:
(1)A={x|-2≤x≤2,x∈Z}; (2)B={(x,y)|;
(3)M={x|(x-2)2(x-3)=0}; (4){自然数中五个最小数的完全平方数};
(5)P={y|y=-x2+6,x∈N,y∈N}.
【思路探究】 解答本题首先弄清集合中元素的性质特点,然后按要求改写.
【规律方法】
应用列举法应注意的问题:(1)用列举法表示集合,要注意是数集还是点集;
(2)列举法适合表示有限集,当集合中元素个数较少时,用列举法表示集合比较方便,且使人一目了然.因此,判定集合是有限集
还是无限集,选择适当的表示方法是关键.
【互动探究】
把本题(5)中集合P改为“{(x,y)|y=-x2+6,x∈N,y∈N}”,求相应问题.
考点3
用描述法表示集合
【例3】用描述法表示下列集合.
(1)正奇数集; (2)使y=有意义的实数x的集合;
(3)坐标平面内,在第二象限内的点所组成的集合;
(4)坐标平面内,不在第一、三象限内的点所组成的集合.
【思路探究】 本题主要考查集合的表示方法,可以把自然语言转化为集合语言,用描述法表示出来.
【规律方法】使用描述法时,应注意六点:
(1)写清楚集合中的代表元素; (2)说明该集合中元素的性质;
(3)不能出现未被说明的字母; (4)多层描述时,应当准确使用“且”“或”;
(5)所有描述的内容都要写在花括号内; (6)用于描述的语句力求简明、确切.
【变式训练】
用描述法表示下列集合:
(1)偶数集; (2)被3除余2的正整数的集合; (3)不等式2x-3<0的解集.
运用方程的思想解决集合相等问题
【例4】(12分)已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.
【思路点拨】 要求c的值此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性、无序性列方程求解.
【思维启迪】 
1.根据两集合中的元素完全相同,列出a,b,c满足的方程求解,这就是方程思想的应用.
2.解决集合相等的问题易产生与互异性相矛盾的增根,这需要解题后进行检验.
1.集合的概念可以从以下几个方面来理解:
(1)集合是一个“整体”;
(2)构成集合的对象必须具有“确定”且“不同”这两个特征.这两个特征不是模棱两可的.判定一组对象能否构成一个集合,关键要看是否有一个明确的客观标准来鉴定这些对象,若鉴定对象确定的客观标准存在,则这些对象就能构成集合,否则不能构成集合.
2.集合的表示方法:
列举法简明、直观适用于元素个数较少的集合;描述法应用更广泛,多适用于元素个数有无穷多的集合.
3.集合的分类:
集合分为有限集和无限集,根据元素的特性,还可以分为数集、点集、图形集等.
1.下列各组对象不能确定一个集合的是________.
①某校高一年级开设的课程;②某校高一年级任教的教师;③某校高一年级1998年出生的学生;④某校高一年级比较聪明的学生.
2.下列关系式中,正确的序号是________.
①a∈{a,b}; ②0∈; ③{x|x2≤0}=; ④{x|x2+2x+5=0}=.
3.下列叙述中,正确的个数是________.
①1是集合N中最小的数 ②若-aN,则a∈N ③若a∈N*,b∈N,则a+b的最小值为2 ④方程x2-4x=-4的解集为{2,2}.
4.用适当的方法表示下列集合.
(1)中国古代四大发明的集合; (2)由大于0小于2的实数组成的集合; ( 3)绝对值等于1的实数的集合; (4)方程x(x2+2x-3)=0的解集; (5)不等式x2+2≤0的解集.
教学反思: