1.2 充分条件和必要条件(1)
【教学目标】
1.从不同角度帮助学生理解充分条件、必要条件与充要条件的意义;
2.结合具体命题,初步认识命题条件的充分性、必要性的判断方法;
3.培养学生的抽象概括和逻辑推理的意识.
【教学重点】构建充分条件、必要条件的数学意义;
【教学难点】命题条件的充分性、必要性的判断.[来源:学&科&网]
【教学过程】[来源:Z+xx+k.Com]
一、复习回顾
1.命题:可以判断真假的语句,可写成:若p则q.
2.四种命题及相互关系:
3.请判断下列命题的真假:
(1)若,则; (2)若,则;[来源:学科网ZXXK]
(3)若,则; (4)若,则
二、讲授新课
1.推断符号“”的含义:
一般地,如果“若,则”为真, 即如果成立,那么一定成立,记作:“”;
如果“若,则”为假, 即如果成立,那么不一定成立,记作:“”.
用推断符号“和”写出下列命题:⑴若,则;⑵若,则;
2.充分条件与必要条件
一般地,如果,那么称p是q的充分条件;同时称q是p的必要条件.
如何理解充分条件与必要条件中的“充分”和“必要”呢?
由上述定义知“”表示有必有,所以p是q的充分条件,这点容易理解.但同时说q是p的必要条件是为什么呢?q是p的必要条件说明没有就没有,是成立的必不可少的条件,但有未必一定有.
充分性:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.它符合上述的“若p则q”为真(即)的形式.“有之必成立,无之未必不成立”.
必要性:必要就是必须,必不可少.它满足上述的“若非q则非p”为真(即)的形式.“有之未必成立,无之必不成立”.
命题按条件和结论的充分性、必要性可分为四类:
(1)充分必要条件(充要条件),即 且;
(2)充分不必要条件,即且;
(3)必要不充分条件,即且;
(4)既不充分又不必要条件,即且.
3.从不同角度理解充分条件、必要条件的意义
(1)借助“子集概念”理解充分条件与必要条件。设为两个集合,集合是指
。这就是说,“”是“”的充分条件,“”是“ ”的必要条件。对于真命题“若p则q”,即,若把p看做集合,把q看做集合,“”相当于“”。
(2)借助“电路图”理解充分条件与必要条件。设“开关闭合”为条件,“灯泡亮”
为结论,可用图1、图2来表示是的充分条件,是的必要条件。
[来源:学#科#网]
(3)回答下列问题中的条件与结论之间的关系:
⑴若,则;
⑵若,则;
⑶若两三角形全等,则两三角形的面积相等.
三、例题
例1:指出下列命题中,p是q的什么条件.
⑴p:,q:;
⑵p:两直线平行,q:内错角相等;
⑶p:, q:;
⑷p:四边形的四条边相等,q:四边形是正方形.[来源:学|科|网Z|X|X|K]
四、课堂练习
课本P8 练习1、2、3
五、课堂小结
1.充分条件的意义;
2.必要条件的意义.
六、课后作业: