2.3 平面向量基本定理
学习目标: 了解平面向量的基本定理及意义;能用两个不共线向量表示一个向量;能把一个向量分解为两个向量。
重点难点: 重点:能用两个不共线向量表示一个向量
难点:对向量共线的的进一步理解
教学过程:
一 复习引入:
1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|=|λ|||;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=
2.运算定律
结合律:λ(μ)=(λμ) ;分配律:(λ+μ)=λ+μ, λ(+)=λ+λ
3. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ.
二、讲解新课:
问题:
①由平行四边形想到:是不是每一个向量都可以分解成两个不共线向量?且分解是唯一?
②对于平面上两个不共线向量,是不是平面上的所有向量都可以用它们来表示?
(1)平面向量基本定理
如果e1,e2是同一平面内的两个________向量,那么对于这一平面内的________向量a,存在唯一一对实数λ1,λ2,使a=________________________________.
(2)基底
平面内________的向量e1,e2叫作表示这一平面内所有向量的一组基底.
探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2) 基底不惟一,关键是不共线;
(3) 由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量
三、讲解范例:
例1 如果e1,e2是平面α内两个不共线的向量,那么下列说法中不正确的是( )
①λe1+μe2(λ,μ∈R)可以表示平面α内的所有向量;
②对于平面α内任一向量a,使a=λe1+μe2的实数对(λ,μ)有无穷多个;
③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则有且只有一个实数λ,使得λ1e1+μ1e2=λ(λ2e1+μ2e2);
④若存在实数λ,μ使得λe1+μe2=0,则λ=μ=0.
A.①② B.②③
C.③④ D.②
反思与感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来.
跟踪训练1 若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )
A.e1-e2,e2-e1 B.2e1-e2,e1-e2
C.2e2-3e1,6e1-4e2 D.e1+e2,e1-e2
如图 ABCD的两条对角线交于点M,且=,=,用,表示,,和
例3已知 ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4
例4(1)如图,,不共线,=t (t?R)用,表示.
(2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线.
例5 已知 a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.
四、课堂练习:
1.下列关于基底的说法正确的是( )
①平面内不共线的任意两个向量都可作为一组基底;
②基底中的向量可以是零向量;
③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的.
A.① B.② C.①③ D.②③
2.已知矢量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系
A.不共线 B.共线 C.相等 D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于( )
A.3 B.-3 C.0 D.2
4.已知a、b不共线,且c =λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1= .
5.已知λ1>0,λ2>0,e1、e2是一组基底,且a =λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).
五、小结(略)
六、课后作业(略):
七、板书设计(略)