格一教案3
章节
1.1.3
课时
1
备课人
二次备课人
课题名称
第一章第一节解三角形的进一步讨论
三维目标
知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
重点目标
在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;
三角形各种类型的判定方法;三角形面积定理的应用。
难点目标
正、余弦定理与三角形的有关性质的综合运用。
导入示标
思考:在ABC中,已知,,,解三角形。
目标三导
学做思一:
例1.在ABC中,已知,讨论三角形解的情况
分析:先由可进一步求出B;
则
从而
1.当A为钝角或直角时,必须才能有且只有一解;否则无解。
2.当A为锐角时,
如果≥,那么只有一解;
如果,那么可以分下面三种情况来讨论:
(1)若,则有两解;
(2)若,则只有一解;
(3)若,则无解。
(以上解答过程详见课本第910页)
评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且
时,有两解;其它情况时则只有一解或无解。
随堂练习
(1)在ABC中,已知,,,试判断此三角形的解的情况。
(2)在ABC中,若,,,则符合题意的b的值有_____个。
(3)在ABC中,,,,如果利用正弦定理解三角形有两解,求x的取值范围。
(答案:(1)有两解;(2)0;(3))
例2.在ABC中,已知,,,判断ABC的类型。
分析:由余弦定理可知
(注意:)
解:,即,
∴。
达标检测
1.
(1)在ABC中,已知,判断ABC的类型。
(2)已知ABC满足条件,判断ABC的类型。
2.
(1)在ABC中,若,,且此三角形的面积,求角C
(2)在ABC中,其三边分别为a、b、c,且三角形的面积,求角C
反思总结
(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;
(2)三角形各种类型的判定方法;
(3)三角形面积定理的应用。
课后练习
(1)在ABC中,已知,,,试判断此三角形的解的情况。
(2)设x、x+1、x+2是钝角三角形的三边长,求实数x的取值范围。
(3)在ABC中,,,,判断ABC的形状。
(4)三角形的两边分别为3cm,5cm,它们所夹的角的余弦为方程的根,
求这个三角形的面积。