有理数的加减法(基础)
【学习目标】
1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;
2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;
3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.
【要点梳理】
要点一、有理数的加法
1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.
2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;
(3)一个数同0相加,仍得这个数.
要点诠释:利用法则进行加法运算的步骤:
(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.
(2)确定和的符号(是“+”还是“-”).
(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).
3.运算律:
有理数加法运算律
加法交换律
文字语言
两个数相加,交换加数的位置,和不变
符号语言
a+b=b+a
加法结合律
文字语言
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
符号语言
(a+b)+c=a+(b+c)
要点诠释:交换加数的位置时,不要忘记符号.
要点二、有理数的减法
1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.
要点诠释:(1)任意两个数都可以进行减法运算.
(2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.
2.法则:减去一个数,等于加这个数的相反数,即有:.
要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:
要点三、有理数加减混合运算
将加减法统一成加法运算,适当应用加法运算律简化计算.
【典型例题】
类型一、有理数的加法运算
1.计算:
(1)(+20)+(+12); (2); (3)(+2)+(-11);
(4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.
【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.
(1)(+20)+(+12)=+(20+12)=+32=32;
(2)
(3)(+2)+(-11)=-(11-2)=-9
(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9
(5)(-2.9)+(+2.9)=0;
(6)(-5)+0=-5.
【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.
举一反三:
【变式1】计算:
【答案】
【变式2】计算:(1) (+10)+(-11); (2)
【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;
(2)
类型二、有理数的减法运算
2. 计算:(1)(-32)-(+5); (2)(+2)-(-25).
【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.
【答案与解析】法一:
法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27
【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.
举一反三:
【变式】(2018?泰安)若( )﹣(﹣2)=3,则括号内的数是( )
A. ﹣1 B. 1 C. 5 D. ﹣5
【答案】B.
根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.
类型三、有理数的加减混合运算
3.(2016春?浦东新区期中)计算:3.8+4﹣(+6)+(﹣8)
【思路点拨】根据有理数的加减混合运算的方法:有理数加减法统一成加法,求解即可.
【答案与解析】
解:原式=(3.8﹣6.8)+(4﹣8)
=﹣3﹣4
=﹣7,
【总结升华】本题考查了有理数的加减混合运算的知识,如果在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.
举一反三:
【变式】用简便方法计算:
(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7)
(2) 2
【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2
(2)原式=(2-1-4)+(--+-)=-3+[-++(--)]=-3-1=-4
类型四、有理数的加减混合运算在实际中的应用
4.(2018秋?香洲区期末)邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.
(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;
(2)C村离A村有多远?
(3)邮递员一共骑了多少千米?
【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;
(2)可直接算出来,也可从数轴上找出这段距离;
(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.
【答案与解析】
解:(1)依题意得,数轴为:
;
(2)依题意得:C点与A点的距离为:2+4=6(千米);
(3)依题意得邮递员骑了:2+3+9+4=18(千米).
【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.
举一反三:
【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:
第1组
第2组
第3组
第4组
第5组
100
150
350
-400
-100
(1)第一名超过第二名多少分?
(2)第一名超过第五名多少分?
【答案】由表看出:第一名350分,第二名150分,第五名-400分.
(1) 350-150=200(分)
(2) 350-(-400)=350+400=750(分)
答:第一名超过第二名200分;第一名超过第五名750分.
【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:
197,202,197,203,200,196,201,198.
计算出售的粮食总共多少千克?
【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6
200×8+(-6)=1594(千克)
答:出售的粮食共1594千克.
法二:197+202+197+203+200+196+201+198=1594(千克)
答:出售的粮食共1594千克.
【巩固练习】
一、选择题
1.(2016?河南模拟)某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高( )
A.﹣10℃ B.﹣6℃ C.10℃ D.6℃
2.(2018?吉林)若等式0□1=﹣1成立,则□内的运算符号为( )
A. + B. ﹣ C. × D. ÷
3.两个有理数相加,和小于其中一个加数而大于另一个加数,需满足( )
A.两个数都是正数 B.两个数都是负数
C.一个是正数,另一个是负数 D.至少有一个数是零
4.下列说法中正确的是
A.正数加负数,和为0
B.两个正数相加和为正;两个负数相加和为负
C.两个有理数相加,等于它们的绝对值相加
D.两个数的和为负数,则这两个数一定是负数
5.下列说法正确的是( )
A.零减去一个数,仍得这个数
B.负数减去负数,结果是负数
C.正数减去负数,结果是正数
D.被减数一定大于差
6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )
A.0.8kg B.0.6kg C.0.5kg D.0.4kg
7. -3+5的相反数是( ).
A.2 B.-2 C.-8 D.8
二、填空题
8.有理数 c在数轴上对应点位置如图所示,用“>”或“<”
(1)|a|______|b|;(2)a+b+c______0:
(3)a-b+c______0;(4)a+c______b;
(5)c-b______a.
9.(2018?上海)计算:|﹣2|+2=________.
10.某月股票M开盘价20元,上午10点跌1.6元,下午收盘时又涨了0.4元,则股票这天的收盘价是_______.
11.列出一个满足下列条件的算式:(1)所有的加数都是负数,和为-5,________;(2)一个加数是0,和是-5________;(3)至少有一个加数是正整数,和是-5,________.
12. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a和b,有a☆b=a-b+1,请你根据新运算,计算(2☆3)☆2的值是 .
13.(2016?汉阳区模拟)计算(﹣3)+(﹣9)的结果为 .
三、解答题
14.计算题
(1) (2)
(3) (4)
(5)
(6)
15. 已知:|a|=2,|b|=3,求a+b的值.
16.(2018?永嘉县校级模拟)某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.(单位:元)
(1)当他卖完这八套儿童服装后是盈利还是亏损?
(2)盈利(或亏损)了多少钱?
【答案与解析】
一、选择题
1. 【答案】C
【解析】解:2﹣(﹣8)
=2+8
=10℃.
故选C.
2.【答案】B
3. 【答案】C
【解析】举例验证.
4.【答案】B
【解析】举反例:如5+(-2)=+3≠0,故A错;如:(-2)+(-3)≠|-2|+|-3|,故C错;如(+2)+(-8)=-6,故D错误.
5.【答案】C
【解析】举反例逐一排除.
6.【答案】B
【解析】因为最低重量为24.7kg,最大重量为25.3kg,故质量最多相差25.3-24.7=0.6kg.
7.【答案】B
二、填空题
8. 【答案】<,<,>,>,>
【解析】由图可知:,且,再根据有理数的加法法则可得答案.
9.【答案】4.
10.【答案】18.8元
【解析】跌1.6元记为-1.6元,涨0.4元记为+0.4元,故有收盘价为20+(-1.6)+0.4-18.8.
11.【答案】(1)(-2)+(-3)=-5 (2)(-5)+0=-5 (3)2+(-7)=-5
【解析】答案不唯一.
12. 【答案】-1
【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-1
13. 【答案】-12.
【解析】同号两数相加的法则是取相同的符号,并把绝对值相加. 原式=﹣(3+9)=﹣12.
三、解答题
14. 【解析】(1)原式;
(2)原式
(3)原式
(4)原式
(5)原式
(6)原式=
15. 【解析】由题意知:a=±2, b=±3,所以要分四种情况代入求值.
∵|a|=2, ∴ a=±2, ∵|b|=3, ∴b=±3.
当a=+2, b=+3时, a+b=(+2)+(+3)=+5;
当a=+2, b=-3时, a+b=(+2)+(-3)=-1;
当a=-2,b=+3时, a+b=(-2)+(+3)=+1;
当a=-2, b=-3时, a+b=(-2)+(-3)=-5.
16. 【解析】
解:根据题意得
(1)2﹣3+2+1﹣2﹣1+0﹣2=﹣3,
55×8+(﹣3)=437元,
∵437>400,
∴卖完后是盈利;
(2)437﹣400=37元,
故盈利37元.