课时分层作业(二十一) 函数的平均变化率
(建议用时:60分钟)
[合格基础练]
一、选择题
1.已知函数f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为( )
A.0.40 B.0.41 C.0.43 D.0.44
B [∵x=2,Δx=0.1,∴Δy=f(x+Δx)-f(x)=f(2.1)-f(2)=(2.12+1)-(22+1)=0.41,故选B.]
2.函数y=1在[2,2+Δx]上的平均变化率是( )
A.0 B.1 C.3 D.Δx
A [==0.]
3.质点运动规律为s=2t2+5,则在时间(3,3+Δt)中,相应的平均速度等于( )
A.6+Δt B.12+Δt+
C.12+2Δt D.12
C [==12+2Δt.]
4.如果函数y=ax+b在区间[1,2]上的平均变化率为3,则a=( )
A.-3 B.2 C.3 D.-2
C [根据平均变化率的定义,可知
==a=3,故选C.]
5.已知函数f(x)的定义域为A,如果对于定义域内某个区间I上的任意两个不同的自变量x1,x2,都有>0,则( )
A.f(x)在这个区间上为增函数
B.f(x)在这个区间上为减函数
C.f(x)在这个区间上的增减性不确定
D.f(x)在这个区间上为常数函数
A [①当x1>x2时,x1-x2>0,则f(x1)-f(x2)>0,即f(x1)>f(x2),所以f(x)在区间I上是增函数.当x1<x2时,x1-x2<0,则f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在区间I上是增函数.综上可知f(x)在区间I上是增函数,故选A.]
二、填空题
6.函数y=-x2+x在x=-1附近的平均变化率为________.
3-Δx [=
=3-Δx.]
7.汽车行驶的路程s和时间t之间的函数关系图像如图所示,在时间段[t0,t1],[t1,t2],[t2,t3]上的平均速度分别为,,,则三者的大小关系为________.
<< [==kOA,==kAB,==kBC,而由图像知kOA<kAB<kBC,
∴<<.]
8.函数f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为________,当x0=2,Δx=0.1时平均变化率的值为________.
6x0+3Δx 12.3 [函数f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为
=
==6x0+3Δx.
当x0=2,Δx=0.1时,
函数f(x)=3x2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.]
三、解答题
9.判断函数g(x)=(k<0,k为常数)在(-∞,0)上的单调性.
[解] 设x1,x2∈(-∞,0),且x1<x2,则g(x1)-g(x2)=-=,
==-.
∵x1<0,x2<0,k<0,∴=->0,
∴g(x)=(k<0)在(-∞,0)上为增函数.
10.已知函数f(x)=,x∈[3,5].
(1)判断函数在区间[3,5]上的单调性,并给出证明;
(2)求该函数的最大值和最小值.
[解] (1)函数f(x)在[3,5]上是增函数.
证明:设任意x1,x2满足3≤x1<x2≤5,则
f(x1)-f(x2)=-
=
=,
所以==.
因为3≤x1<x2≤5,所以x1+1>0,x2+1>0,
所以=>0,
所以f(x)=在[3,5]上是增函数.
(2)f(x)min=f(3)==,
f(x)max=f(5)==.
[等级过关练]
1.若函数f(x)=-x2+10的图像上一点及邻近一点,则=( )
A.3 B.-3
C.-3-(Δx)2 D.-Δx-3
D [∵Δy=f-f=-3Δx-(Δx)2,
∴==-3-Δx,
故选D.]
2.函数y=x2在x0到x0+Δx之间的平均变化率为k1,在x0-Δx到x0之间的平均变化率为k2,则k1与k2的大小关系为( )
A.k1>k2 B.k1<k2
C.k1=k2 D.不确定
D [k1==2x0+Δx,k2==2x0-Δx.因为Δx可大于零也可小于零,所以k1与k2的大小关系不确定.]
3.已知曲线y=-1上两点A,B2+Δx,-+Δy,当Δx=1时,割线AB的斜率为________.
- [∵Δy=-
=-==,
∴==,
即k==-.
∴当Δx=1时,k=-=-.]
4.如图是函数y=f(x)的图像,则函数f(x)在区间[0,2]上的平均变化率为________.
[由函数f(x)的图像知,
f(x)=
所以函数f(x)在区间[0,2]上的平均变化率为==.]
5.已知函数f(x)=,x∈[1,+∞).
(1)当a=时,求函数f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.
[解] (1)当a=时,f(x)=x++2.
设1≤x1<x2,则f(x2)-f(x1)=(x2-x1)·,
∴==.
∵1≤x1<x2,∴2x1x2>2,
∴=>0,
∴f(x)在区间[1,+∞)上为增函数,
∴f(x)在区间[1,+∞)上的最小值为f(1)=.
(2)在区间[1,+∞)上f(x)>0恒成立?x2+2x+a>0恒成立.
设y=x2+2x+a,x∈[1,+∞),则函数y=x2+2x+a=(x+1)2+a-1在区间[1,+∞)上是增函数.
所以当x=1时,y取最小值,即ymin=3+a,
于是当且仅当ymin=3+a>0时,函数f(x)>0恒成立,
故a>-3,实数a的取值范围为(-3,+∞).
课时分层作业(二十六) 函数的应用(一)
(建议用时:60分钟)
[合格基础练]
一、选择题
1.某厂日产手套的总成本y(元)与日产量x(双)之间的关系为y=5x+40 000.而手套出厂价格为每双10元,要使该厂不亏本至少日产手套( )
A.2 000双 B.4 000双
C.6 000双 D.8 000双
D [由5x+40 000≤10x,得x≥8 000,即日产手套至少8 000双才不亏本.]
2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图像如下图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )
A.310元 B.300元
C.290元 D.280元
B [设函数解析式为y=kx+b(k≠0),
函数图像过点(1,800),(2,1 300),
则解得
∴y=500x+300,当x=0时,y=300.
∴营销人员没有销售量时的收入是300元.]
3.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y=
其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为( )
A.15 B.40
C.25 D.130
C [令y=60.
若4x=60,则x=15>10,不合题意;
若2x+10=60,则x=25,满足题意;
若1.5x=60,则x=40<100,不合题意.
故拟录用25人.]
4.商店某种货物的进价下降了8%,但销售价不变,于是这种货物的销售利润率由原来的r%增加到(r+10)%,则r的值等于( )
A.12 B.15
C.25 D.50
B [设原销售价为a,原进价为x,可以列出方程组:
解这个方程组,消去a,x,可得r=15.]
5.一个人以6 m/s的速度去追停在交通灯前的汽车,当他离汽车25 m时,交通灯由红变绿,汽车以1 m/s2的加速度匀加速开走,那么( )
A.此人可在7 s内追上汽车
B.此人可在10 s内追上汽车
C.此人追不上汽车,其间距最少为5 m
D.此人追不上汽车,其间距最少为7 m
D [设汽车经过t s行驶的路程为s m,则s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7.当t=6时,d取得最小值7.]
二、填空题
6.经市场调查,某商品的日销售量(单位:件)和价格(单位:元/件)均为时间t(单位:天)的函数.日销售量为f(t)=2t+100,价格为g(t)=t+4,则该种商品的日销售额S(单位:元)与时间t的函数解析式为________.
S(t)=2t2+108t+400,t∈N [日销售额=日销售量×价格,故S=f(t)×g(t)=(2t+100)×(t+4)=2t2+108t+400,t∈N.]
7.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是________cm2.
2 [设一个三角形的边长为x cm,则另一个三角形的边长为(4-x)cm,两个三角形的面积和为S=x2+(4-x)2=(x-2)2+2≥2,
这两个正三角形面积之和的最小值是2 cm2.]
8.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超出800元部分的14%纳税;超过4 000元的按全稿酬的11.2%纳税.某人出版了一本书共纳税420元,这个人的稿费为________元.
3 800 [若这个人的稿费为4 000元时,应纳税(4 000-800)×14%=448(元).
又∵420<448,∴此人的稿费应在800到4 000之间,设为x,∴(x-800)×14%=420,解得x=3 800元.]
三、解答题
9.某校校长暑假将带领该校市级三好学生去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内,全部按票价的6折(即按全票价的60%收费)优惠”.若全票价为240元.
(1)设学生数为x人,甲旅行社收费为y甲元,乙旅行社收费为y乙元,分别写出两家旅行社的收费y甲,y乙与学生数x之间的解析式;
(2)当学生数是多少时,两家旅行社的收费一样?
(3)就学生人数讨论哪家旅行社更优惠?
[解] (1)y甲=120x+240(x∈N+),
y乙=(x+1)×240×60%=144(x+1)(x∈N+).
(2)由120x+240=144x+144,解得x=4,即当学生数为4人时,两家旅行社的收费一样.
(3)当x<4时,乙旅行社更优惠;当x>4时,甲旅行社更优惠.
10.一块形状为直角三角形的铁皮,直角边长分别是40 cm与60 cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪才能使剩下的残料最少?并求出此时残料的面积.
[解] 设直角三角形为△ABC,AC=40,BC=60,矩形为CDEF,如图所示,设CD=x,CF=y,则由Rt△AFE∽Rt△EDB得=,即=,解得y=40-x,
记剩下的残料面积为S,则
S=×60×40-xy=x2-40x+1 200=(x-30)2+600(0<x<60),
故当x=30时,Smin=600,此时y=20,
所以当x=30,y=20时,剩下的残料面积最少为600 cm2.
[等级过关练]
1.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示股票开始买卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元.下面给出了四个图像,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是( )
C [根据即时价格与平均价格的相互依赖关系,可知,当即时价格升高时,对应平均价格也升高;反之,当即时价格降低时,对应平均价格也降低,故选项C中的图像可能正确.]
2.一个体户有一批货,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%.如果月末售出,可获利120元,但要付保管费5元.这位个体户为获利最大,则这批货( )
A.月初售出好 B.月末售出好
C.月初或月末售出一样 D.由成本费的大小确定
D [设这批货物成本费为x元,若月初售出时,到月末共获利为100+(x+100)×2.4%;
若月末售出时,可获利为120-5=115(元).
可得100+(x+100)×2.4%-115=2.4%×(x-525).
∴当成本费大于525元时,月初售出好;当成本费小于525元时,月末售出好;当成本费等于525元时,月初或月末售出均可.]
3.已知直角梯形ABCD,如图(1)所示,动点P从点B出发,由B→C→D→A沿边运动,设点P运动的路程为x,△ABP的面积为f(x).如果函数y=f(x)的图像如图(2)所示,则△ABC的面积为________.
(1) (2)
16 [由题图可知BC=4,CD=5,DA=5,
所以AB=5+=5+3=8.
所以S△ABC=×8×4=16.]
4.如图所示,在矩形ABCD中,已知AB=13,BC=3,在AB,AD,CD,CB上分别截取AE,AH,CG,CF,且AE=AH=CG=CF=x,则x=________时,四边形EFGH的面积最大,最大面积为________.
3 30 [设四边形EFGH的面积为S,则
S=13×3-2
=-2x2+16x=-2(x-4)2+32,x∈(0,3].
因为S=-2(x-4)2+32在(0,3]上是增函数,
所以当x=3时,S有最大值为30.]
5.通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生接受概念的能力(f(x)的值愈大,表示接受的能力愈强),x表示提出和讲授概念的时间(单位:分),可有以下的公式
f(x)=
(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?
(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?
[解] (1)当0由f(x)的图像(图略)可知,当x=10时,f(x)max=f(10)=59;
当10当16因此,开讲后10分钟,学生的接受能力最强,并能持续6分钟.
(2)∵f(5)=-0.1×(5-13)2+59.9=53.5,
f(20)=-3×20+107=47<53.5,
∴开讲后5分钟学生的接受能力比开讲后20分钟强.
课时分层作业(十八) 函数的概念
(建议用时:60分钟)
[合格基础练]
一、选择题
1.已知函数f(x)=,则f=( )
A. B.
C.a D.3a
D [f=3a,故选D.]
2.下列表示y关于x的函数的是( )
A.y=x2 B.y2=x
C.|y|=x D.|y|=|x|
A [结合函数的定义可知A正确,选A.]
3.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为( )
A.{-1,0,3} B.{0,1,2,3}
C.{y|-1≤y≤3} D.{y|0≤y≤3}
A [当x=0时,y=0;当x=1时,y=1-2=-1;当x=2时,y=4-2×2=0;当x=3时,y=9-2×3=3,∴函数y=x2-2x的值域为{-1,0,3}.]
4.函数y=的定义域是( )
A.(-1,+∞) B.[-1,+∞)
C.(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞)
D [由题意可得所以x≥-1且x≠1,
故函数y=的定义域为[-1,1)∪(1,+∞).故选D.]
5.下列四组函数中表示同一函数的是( )
A.f(x)=x,g(x)=()2
B.f(x)=x2,g(x)=(x+1)2
C.f(x)=,g(x)=|x|
D.f(x)=0,g(x)=+
C [∵f(x)=x(x∈R)与g(x)=()2(x≥0)两个函数的定义域不一致,∴A中两个函数不表示同一函数;∵f(x)=x2,g(x)=(x+1)2两个函数的对应法则不一致,∴B中两个函数不表示同一函数;∵f(x)==|x|与g(x)=|x|,两个函数的定义域均为R,∴C中两个函数表示同一函数;f(x)=0,g(x)=+=0(x=1)两个函数的定义域不一致,∴D中两个函数不表示同一函数,故选C.]
二、填空题
6.已知函数f(x)=x+,则f(2)+f(-2)的值是________.
0 [f(2)+f(-2)=2+-2-=0.]
7.已知函数f(x)=,又知f(t)=6,则t=________.
- [由f(t)=6,得=6,即t=-.]
8.函数y=的值域是________.
(0,8] [通过配方可得函数y==,
∵(x-2)2+1≥1,∴0<≤8,故0<y≤8.
故函数y=的值域为(0,8].]
三、解答题
9.已知函数f(x)=-.
(1)求函数f(x)的定义域;
(2)求f(-1),f(12)的值.
[解] (1)根据题意知x-1≠0且x+4≥0,所以x≥-4且x≠1,
即函数f(x)的定义域为[-4,1)∪(1,+∞).
(2)f(-1)=-=-3-,
f(12)=-=-4=-.
10.已知集合A是函数f(x)=的定义域,集合B是其值域,求A∪B的子集的个数.
[解] 要使函数f(x)的解析式有意义,则需满足解得x=1或x=-1,所以函数f(x)的定义域A={-1,1}.
又f(1)=f(-1)=0,所以函数的值域B={0},所以A∪B={1,-1,0},故其子集的个数为23=8.
[等级过关练]
1.若集合M={x|-4≤x≤4},N={y|-2≤y≤2},下列式子不表示定义在集合M到集合N上的函数的是( )
A.y=x B.y=(x-1)
C.y=x2-2 D.y=x2
B [当x=-4时,×(-4-1)=-?N,故选项B中函数不是定义在集合M到集合N上的函数.]
2.下列函数中,对于定义域内的任意x,f(x+1)=f(x)+1恒成立的为( )
A.f(x)=x+1 B.f(x)=-x2
C.f(x)= D.y=|x|
A [对于A选项,f(x+1)=(x+1)+1=f(x)+1,成立;
对于B选项,f(x+1)=-(x+1)2≠f(x)+1,不成立;
对于C选项,f(x+1)=,f(x)+1=+1,不成立;
对于D选项,f(x+1)=|x+1|,f(x)+1=|x|+1,不成立.]
3.已知函数f(x)的定义域为(-1,1),则函数g(x)=f+f(x-1)的定义域是________.
(0,2) [由题意知即
解得0<x<2,于是函数g(x)的定义域为(0,2).]
4.函数f(x),g(x)分别由下表给出.
x
1
2
3
f(x)
1
3
1
x
1
2
3
g(x)
3
2
1
则f(g(1))的值为________;满足f(g(x))>g(f(x))的x的值是________.
1 2 [∵g(1)=3,f(3)=1,∴f(g(1))=1.
当x=1时,f(g(1))=f(3)=1,g(f(1))=g(1)=3,
f(g(x))当x=2时,f(g(2))=f(2)=3,g(f(2))=g(3)=1,
f(g(x))>g(f(x)),符合题意;
当x=3时,f(g(3))=f(1)=1,g(f(3))=g(1)=3,
f(g(x))5.已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.
(1)求f(0),f(1)的值;
(2)求证f=-f(x).
[解] (1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;
令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.
(2)因为·x=1,所以f+f(x)=f=f(1)=0,
所以f=-f(x).
课时分层作业(十九) 函数的表示方法
(建议用时:60分钟)
[合格基础练]
一、选择题
1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )
C [距学校的距离应逐渐减小,由于小明先是匀速行驶,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.]
2.已知函数f(x)=则f(3)的值是( )
A.1 B.2 C.8 D.9
A [f(3)=3-2=1.]
3.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图像是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为( )
x
1
2
3
f(x)
2
3
0
A.3 B.2 C.1 D.0
B [由函数g(x)的图像知,g(2)=1,则f(g(2))=f(1)=2.]
4.如果f=,则当x≠0且x≠1时,f(x)等于( )
A. B.
C. D.-1
B [令=t,则x=,代入f=,则有f(t)==,所以f(x)=(x≠0,且x≠1),故选B.]
5.函数f(x)=的值域是( )
A.R B.[0,2]∪{3}
C.[0,+∞) D.[0,3]
B [当0≤x≤1时,0≤2x≤2,即0≤f(x)≤2;当1二、填空题
6.已知函数f(x)=若f(x)=3,则x的值是________.
[依题意,若x≤0,则x+2=3,解得x=1,不合题意,舍去.若07.已知函数f(x)的图像如图所示,则f(x)的解析式是________.
f(x)= [由题图可知,图像是由两条线段组成,
当-1≤x<0时,设f(x)=ax+b,将(-1,0),(0,1)代入解析式,得∴即f(x)=x+1.
当0≤x≤1时,设f(x)=kx,将(1,-1)代入,则k=-1,即f(x)=-x.
综上,f(x)=]
8.若一个长方体的高为80 cm,长比宽多10 cm,则这个长方体的体积y(cm3)与长方体的宽x(cm)之间的表达式是________.
y=80x(x+10),x∈(0,+∞) [由题意可知,长方体的长为(x+10)cm,从而长方体的体积y=80x(x+10),x>0.]
三、解答题
9.(1)已知f(x)是一次函数,且满足2f(x+3)-f(x-2)=2x+21,求f(x)的解析式;
(2)已知f(x)为二次函数,且满足f(0)=1,f(x-1)-f(x)=4x,求f(x)的解析式;
(3)已知f=x2++1,求f(x)的解析式.
[解] (1)设f(x)=ax+b(a≠0),
则2f(x+3)-f(x-2)=2[a(x+3)+b]-[a(x-2)+b]=2ax+6a+2b-ax+2a-b=ax+8a+b=2x+21,
所以a=2,b=5,所以f(x)=2x+5.
(2)因为f(x)为二次函数,设f(x)=ax2+bx+c(a≠0).
由f(0)=1,得c=1.
又因为f(x-1)-f(x)=4x,
所以a(x-1)2+b(x-1)+c-(ax2+bx+c)=4x,整理,得-2ax+a-b=4x,求得a=-2,b=-2,
所以f(x)=-2x2-2x+1.
(3)∵f=2+2+1=2+3.∴f(x)=x2+3(x≠0).
10.已知f(x)=
(1)画出f(x)的图像;
(2)求f(x)的定义域和值域.
[解] (1)利用描点法,作出f(x)的图像,如图所示.
(2)由条件知,函数f(x)的定义域为R.由图像知,当-1≤x≤1时,f(x)=x2的值域为[0,1],
当x>1或x<-1时,f(x)=1,
所以f(x)的值域为[0,1].
[等级过关练]
1.已知函数f(2x+1)=3x+2,且f(a)=2,则a的值为( )
A.-1 B.5 C.1 D.8
C [由3x+2=2得x=0,
所以a=2×0+1=1.故选C.]
2.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m元收费;用水量超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水量为( )
A.13立方米 B.14立方米
C.18立方米 D.26立方米
A [该单位职工每月应缴水费y与实际用水量x满足的关系式为y=由y=16m,可知x>10.令2mx-10m=16m,解得x=13.]
3.设f(x)=2x+a,g(x)=(x2+3),且g(f(x))=x2-x+1,则a的值为________.
-1 [因为g(x)=(x2+3),所以g(f(x))=[(2x+a)2+3]=(4x2+4ax+a2+3)=x2-x+1,求得a=-1.]
4.在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图像只有一个交点,则a的值为________.
- [在同一平面直角坐标系内,作出函数y=2a与y=|x-a|-1的大致图像,如图所示.
由题意,可知2a=-1,则a=-.]
5.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过5 000元的部分不必纳税,超过5 000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:
全月应纳税所得额
税率
不超过3 000元的部分
3%
超过3 000元至12 000元的部分
10%
超过12 000元至25 000元的部分
20%
某职工每月收入为x元,应交纳的税额为y元.
(1)请写出y关于x的函数关系式;
(2)有一职工八月份交纳了54元的税款,请问该职工八月份的工资是多少?
[解] (1)由题意,得
y=
(2)∵该职工八月份交纳了54元的税款,∴5 000故这名职工八月份的工资是6 800元.
课时分层作业(二十四)
函数的零点及其与对应方程、不等式解集之间的关系
(建议用时:60分钟)
[合格基础练]
一、选择题
1.函数f(x)=x2-5x-6的零点是( )
A.2,3 B.-2,3
C.6,-1 D.-6,1
C [令x2-5x-6=0,得x1=6,x2=-1.选C.]
2.函数y=f(x)的大致图像如图所示,则函数y=f(|x|)的零点的个数为( )
A.4 B.5 C.6 D.7
D [∵y=f(|x|)是偶函数,∴其图像关于y轴对称.
∵当x>0时,有三个零点,∴当x<0时,也有三个零点.又因为0是y=f(|x|)的一个零点,故共有7个零点.]
3.已知f(x)唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的是( )
A.函数f(x)在(1,2)或[2,3]内有零点
B.函数f(x)在(3,5)内无零点
C.函数f(x)在(2,5)内有零点
D.函数f(x)在(2,4)内不一定有零点
C [唯一的零点必须在区间(1,3)内,而不在[3,5),所以函数f(x)在(2,5)内有零点是错误的,可能没有.]
4.已知不等式x2+ax+4<0的解集为空集,则a的取值范围是( )
A.[-4,4] B.(-4,4)
C.(-∞,-4]∪[4,+∞) D.(-∞,-4)∪(4,+∞)
A [由条件可知,Δ=a2-4×4≤0,所以-4≤a≤4.]
5.二次不等式ax2+bx+1>0的解集为,则ab的值为( )
A.-6 B.-2 C.2 D.6
C [由题意知方程ax2+bx+1=0的实数根为-1和,且a<0,
由根与系数的关系得
解得a=-2,b=-1,所以ab=2.故选C.]
二、填空题
6.若函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是________.
-,- [依题意知方程x2-ax-b=0的两个根是2和3,所以有a=2+3=5,-b=2×3=6,b=-6,因此g(x)=-6x2-5x-1,易求出其零点是-和-.]
7.若f(x)=x+b的零点在区间(0,1)内,则b的取值范围为________.
(-1,0) [∵f(x)=x+b是增函数,又f(x)=x+b的零点在区间(0,1)内,
∴∴∴-18.已知函数f(x)是定义域为R的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有________个零点,这几个零点的和等于________.
3 0 [∵f(x)是R上的奇函数,∴f(0)=0,又∵f(x)在(0,+∞)上是增函数,由奇函数的对称性可知,f(x)在(-∞,0)上也单调递增,由f(2)=-f(-2)=0.因此在(0,+∞)上只有一个零点,综上f(x)在R上共有3个零点,其和为-2+0+2=0.]
三、解答题
9.关于x的方程mx2+2(m+3)x+2m+14=0有两个实数根,且一个大于4,一个小于4,求m的取值范围.
[解] 令f(x)=mx2+2(m+3)x+2m+14,
依题意得或
即或
解得-10.已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.
(1)写出函数y=f(x)的解析式;
(2)若方程f(x)=a恰有3个不同的解,求a的取值范围.
[解] (1)当x∈(-∞,0)时,-x∈(0,+∞),
∵y=f(x)是奇函数,
∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x,
∴f(x)=
(2)当x∈[0,+∞)时,f(x)=x2-2x=(x-1)2-1,最小值为-1;当x∈(-∞,0)时,f(x)=-x2-2x=1-(x+1)2,最大值为1.
∴作出函数y=f(x)的图像,如图所示,
根据图像得,若方程f(x)=a恰有3个不同的解,
∴a的取值范围是(-1,1).
[等级过关练]
1.关于x的不等式ax2+bx+2>0的解集为(-1,2),则关于x的不等式bx2-ax-2>0的解集为( )
A.(-2,1)
B.(-∞,-2)∪(1,+∞)
C.(-∞,-1)∪(2,+∞)
D.(-1,2)
B [因为关于x的不等式ax2+bx+2>0的解集为(-1,2),
所以-1,2是ax2+bx+2=0(a<0)的两根.
所以所以a=-1,b=1.
所以不等式bx2-ax-2>0即为x2+x-2>0,
所以x<-2或x>1,故选B.]
2.对于任意实数x,不等式(a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是( )
A.(-∞,2) B.(-∞,2]
C.(-2,2) D.(-2,2]
D [当a=2时,-4<0恒成立.
当a≠2时,∴-2<a<2.
综上,得-2<a≤2.]
3.设函数f(x)=若f(-4)=f(0),f(-2)=-2,则方程f(x)=x的解的个数是( )
A.1 B.2 C.3 D.4
C [由已知解得
∴f(x)=
当x≤0时,方程为x2+4x+2=x,
即x2+3x+2=0,
∴x=-1或x=-2;
当x>0时,方程为x=2,
∴方程f(x)=x有3个解.]
4.在R上定义运算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围为________.
[∵(x-a)⊙(x+a)=(x-a)·(1-x-a),
∴不等式(x-a)⊙(x+a)<1,
即(x-a)(1-x-a)<1对任意实数x恒成立,
即x2-x-a2+a+1>0对任意实数x恒成立,
所以Δ=1-4(-a2+a+1)<0,解得-<a<.]
5.设二次函数f(x)=ax2+bx+c(a≠0),函数F(x)=f(x)-x的两个零点为m,n(m<n).
(1)若m=-1,n=2,求不等式F(x)>0的解集;
(2)若a>0,且0<x<m<n<,比较f(x)与m的大小.
[解] (1)由题意知a≠0,F(x)=f(x)-x=a(x-m)(x-n),当m=-1,n=2时,不等式F(x)>0,即a(x+1)·(x-2)>0.
当a>0时,不等式F(x)>0的解集为{x|x<-1或x>2};
当a<0时,不等式F(x)>0的解集为{x|-1<x<2}.
(2)f(x)-m=F(x)+x-m=a(x-m)(x-n)+x-m=(x-m)(ax-an+1),因为a>0,且0<x<m<n<,所以x-m<0,1-an+ax>0,所以f(x)-m<0,即f(x)<m.
课时分层作业(二十) 单调性的定义与证明
(建议用时:60分钟)
[合格基础练]
一、选择题
1.如图是定义在区间[-5,5]上的函数y=f(x),则下列关于函数f(x)的说法错误的是( )
A.函数在区间[-5,-3]上单调递增
B.函数在区间[1,4]上单调递增
C.函数在区间[-3,1]∪[4,5]上单调递减
D.函数在区间[-5,5]上没有单调性
C [由题图可知,f(x)在区间[-3,1],[4,5]上单调递减,单调区间不可以用并集“∪”连接,故选C.]
2.若函数f(x)=(2a-1)x+b在R上是单调减函数,则有( )
A.a≥ B.a≤
C.a> D.a<
D [函数f(x)=(2a-1)x+b在R上是单调减函数,则2a-1<0,即a<.故选D.]
3.函数y=在[2,3]上的最小值为( )
A.2 B. C. D.-
B [∵函数y=在[2,3]上单调递减,∴当x=3时,ymin==.]
4.如果函数f(x)=x2-2bx+2在区间[3,+∞)上是增函数,则b的取值范围为( )
A.b=3 B.b≥3 C.b≤3 D.b≠3
C [函数f(x)=x2-2bx+2的图像是开口向上,且以直线x=b为对称轴的抛物线,
若函数f(x)=x2-2bx+2在区间[3,+∞)上是增函数,则b≤3,故选C.]
5.设函数f(x)在(-∞,+∞)上是减函数,a,b∈R且a+b≤0,则下列选项正确的是( )
A.f(a)+f(b)≤-[f(a)+f(b)]
B.f(a)+f(b)≤f(-a)+f(-b)
C.f(a)+f(b)≥-[f(a)+f(b)]
D.f(a)+f(b)≥f(-a)+f(-b)
D [因为a+b≤0,所以a≤-b或b≤-a,
又函数f(x)在(-∞,+∞)上是减函数,
所以f(a)≥f(-b),f(b)≥f(-a),
所以f(a)+f(b)≥f(-a)+f(-b).]
二、填空题
6.函数f(x)=在[1,b](b>1)上的最小值是,则b=________.
4 [因为f(x)=在[1,b]上是减函数,所以f(x)在[1,b]上的最小值为f(b)==,所以b=4.]
7.若函数f(x)=在(a,+∞)上单调递减,则a的取值范围是________.
[-1,+∞) [函数f(x)=的单调递减区间为(-∞,-1),(-1,+∞),
又f(x)在(a,+∞)上单调递减,所以a≥-1.]
8.已知f(x)在定义域内是减函数,且f(x)>0,在其定义域内下列函数为单调增函数的是________.
①y=a+f(x)(a为常数);②y=a-f(x)(a为常数);
③y=;④y=[f(x)]2.
②③ [f(x)在定义域内是减函数,且f(x)>0时,-f(x),均为递增函数,故选②③.]
三、解答题
9.f(x)是定义在(0,+∞)上的增函数,解不等式f(x)>f(8(x-2)).
[解] 由f(x)是定义在(0,+∞)上的增函数得,解得2<x<.
10.求函数f(x)=x+在[1,4]上的最值.
[解] 设1≤x1∵1≤x10,
∴f(x1)>f(x2),∴f(x)在[1,2)上是减函数.
同理f(x)在[2,4]上是增函数.
∴当x=2时,f(x)取得最小值4;当x=1或x=4时,f(x)取得最大值5.
[等级过关练]
1.定义在R上的函数f(x),对任意x1,x2∈R(x1≠x2),有<0,则( )
A.f(3)C.f(2)A [对任意x1,x2∈R(x1≠x2),有<0,则x2-x1与f(x2)-f(x1)异号,则f(x)在R上是减函数.又3>2>1,则f(3)2.已知函数f(x)=是R上的减函数,则实数a的取值范围是( )
A.(0,3) B.(0,3]
C.(0,2) D.(0,2]
D [由题意知实数a满足解得0<a≤2,故实数a的取值范围为(0,2].]
3.函数f(x)=2x2-3|x|的单调递减区间是________.
, [函数f(x)=2x2-3|x|=
图像如图所示,f(x)的单调递减区间为
,.
]
4.用min{a,b}表示a,b两个数中的最小值.设f(x)=min{x+2,10-x}(x≥0),则f(x)的最大值为________.
6 [在同一个平面直角坐标系内画出函数y=x+2和y=10-x的图像.
根据min{x+2,10-x}(x≥0)的含义可知,f(x)的图像应为图中的实线部分.
解方程x+2=10-x,得x=4,此时y=6,故两图像的交点为(4,6).
所以f(x)=其最大值为交点的纵坐标,所以f(x)的最大值为6.]
5.已知一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),且f(f(x))=16x+5.
(1)求f(x)的解析式;
(2)若g(x)在(1,+∞)上单调递增,求实数m的取值范围.
[解] (1)由题意设f(x)=ax+b(a>0).
从而f(f(x))=a(ax+b)+b=a2x+ab+b=16x+5,
所以
解得或(不合题意,舍去).
所以f(x)的解析式为f(x)=4x+1.
(2)g(x)=f(x)(x+m)=(4x+1)(x+m)=4x2+(4m+1)x+m,g(x)图像的对称轴为直线x=-.
若g(x)在(1,+∞)上单调递增,则-≤1,解得m≥-,所以实数m的取值范围为.
课时分层作业(二十三) 奇偶性的应用
(建议用时:60分钟)
[合格基础练]
一、选择题
1.已知函数y=f(x)为奇函数,且当x>0时,f(x)=x2-2x+3,则当x<0时,f(x)的解析式是( )
A.f(x)=-x2+2x-3 B.f(x)=-x2-2x-3
C.f(x)=x2-2x+3 D.f(x)=-x2-2x+3
B [若x<0,则-x>0,因为当x>0时,f(x)=x2-2x+3,所以f(-x)=x2+2x+3,因为函数f(x)是奇函数,所以f(-x)=x2+2x+3=-f(x),所以f(x)=-x2-2x-3,所以x<0时,f(x)=-x2-2x-3.故选B.]
2.已知f(x)是偶函数,且在区间[0,+∞)上是增函数,则f(-0.5),f(-1),f(0)的大小关系是( )
A.f(-0.5)<f(0)<f(-1)
B.f(-1)<f(-0.5)<f(0)
C.f(0)<f(-0.5)<f(-1)
D.f(-1)<f(0)<f(-0.5)
C [∵函数f(x)为偶函数,∴f(-0.5)=f(0.5),f(-1)=f(1).又∵f(x)在区间[0,+∞)上是增函数,∴f(0)<f(0.5)<f(1),即f(0)<f(-0.5)<f(-1),故选C.]
3.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调递增区间为( )
A.(-∞,0] B.[0,+∞)
C.(-∞,+∞) D.[1,+∞)
A [因为函数为偶函数,所以a+2=0,a=-2,即该函数为f(x)=-2x2+1,所以函数在(-∞,0]上单调递增.]
4.一个偶函数定义在区间[-7,7]上,它在[0,7]上的图像如图,下列说法正确的是( )
A.这个函数仅有一个单调增区间
B.这个函数有两个单调减区间
C.这个函数在其定义域内有最大值是7
D.这个函数在其定义域内有最小值是-7
C [根据偶函数在[0,7]上的图像及其对称性,作出函数在[-7,7]上的图像,如图所示,可知这个函数有三个单调增区间;有三个单调减区间;在其定义域内有最大值是7;在其定义域内最小值不是-7.故选C.
5.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)A. B.
C. D.
A [由题意得|2x-1|<?-<2x-1<?<2x<?二、填空题
6.函数f(x)在R上为偶函数,且x>0时,f(x)=+1,则当x<0时,f(x)=________.
+1 [∵f(x)为偶函数,x>0时,f(x)=+1,
∴当x<0时,-x>0,
f(x)=f(-x)=+1,
即x<0时,f(x)=+1.]
7.偶函数f(x)在(0,+∞)内的最小值为2 019,则f(x)在(-∞,0)上的最小值为________.
2 019 [由于偶函数的图像关于y轴对称,
所以f(x)在对称区间内的最值相等.
又当x∈(0,+∞)时,f(x)min=2 019,
故当x∈(-∞,0)时,f(x)min=2 019.]
8.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)按从小到大的排列是________.
f(-2)当m≠1时,由题意可知,其图像关于y轴对称,∴m=0,
∴f(x)=-x2+2,
∴f(x)在(-∞,0)上递增,在(0,+∞)上递减.
又0<1<2,∴f(0)>f(1)>f(2)=f(-2).]
三、解答题
9.已知f(x)是定义在(-1,1)上的奇函数,且f(x)在(-1,1)上是减函数,解不等式f(1-x)+f(1-2x)<0.
[解] ∵f(x)是定义在(-1,1)上的奇函数,
∴由f(1-x)+f(1-2x)<0,得
f(1-x)<-f(1-2x),∴f(1-x)又∵f(x)在(-1,1)上是减函数,
∴解得0∴原不等式的解集为.
10.已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.
[解] F(x)在(-∞,0)上是减函数.
证明如下:
任取x1,x2∈(-∞,0),且x1-x2>0.
因为y=f(x)在(0,+∞)上是增函数,且f(x)<0,所以f(-x2)又因为f(x)是奇函数,
所以f(-x2)=-f(x2),f(-x1)=-f(x1),②
由①②得f(x2)>f(x1)>0.于是F(x1)-F(x2)=>0,即F(x1)>F(x2),
所以F(x)=在(-∞,0)上是减函数.
[等级过关练]
1.下列函数中,是偶函数,且在区间(0,1)上为增函数的是( )
A.y=|x| B.y=1-x
C.y= D.y=-x2+4
A [选项B中,函数不具备奇偶性;选项C中,函数是奇函数;选项A,D中的函数是偶函数,但函数y=-x2+4在区间(0,1)上单调递减.故选A.]
2.若奇函数f(x)在(-∞,0)上的解析式为f(x)=x(1+x),则f(x)在(0,+∞)上有( )
A.最大值- B.最大值
C.最小值- D.最小值
B [法一(奇函数的图像特征):当x<0时,
f(x)=x2+x=2-,
所以f(x)有最小值-,因为f(x)是奇函数,
所以当x>0时,f(x)有最大值.
法二(直接法):当x>0时,-x<0,
所以f(-x)=-x(1-x).
又f(-x)=-f(x),
所以f(x)=x(1-x)=-x2+x=-2+,
所以f(x)有最大值.故选B.]
3.如果函数F(x)=是奇函数,则f(x)=________.
2x+3 [当x<0时,-x>0,F(-x)=-2x-3,
又F(x)为奇函数,故F(-x)=-F(x),
∴F(x)=2x+3,即f(x)=2x+3.]
4.已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数.若f(-3)=0,则<0的解集为________.
{x|-33} [∵f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数,
∴f(x)在区间(0,+∞)上是减函数,
∴f(3)=f(-3)=0.当x>0时,f(x)<0,解得x>3;
当x<0时,f(x)>0,解得-35.设定义在[-2,2]上的奇函数f(x)=x5+x3+b.
(1)求b的值;
(2)若f(x)在[0,2]上单调递增,且f(m)+f(m-1)>0,求实数m的取值范围.
[解] (1)因为函数f(x)是定义在[-2,2]上的奇函数,
所以f(0)=0,解得b=0.
(2)因为函数f(x)在[0,2]上是增函数,又因为f(x)是奇函数,所以f(x)在[-2,2]上是单调递增的,
因为f(m)+f(m-1)>0,
所以f(m-1)>-f(m)=f(-m),
所以m-1>-m,①
又需要不等式f(m)+f(m-1)>0在函数f(x)定义域范围内有意义.
所以②
解①②得所以m的取值范围为.
课时分层作业(二十二) 奇偶性的概念
(建议用时:60分钟)
[合格基础练]
一、选择题
1.设f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2-x,则f(1)=( )
A.- B.-
C. D.
A [因为f(x)是定义在R上的奇函数,所以f(1)=-f(-1)=-.]
2.若函数f(x)(f(x)≠0)为奇函数,则必有( )
A.f(x)f(-x)>0 B.f(x)f(-x)<0
C.f(x)f(-x)
B [∵f(x)为奇函数,
∴f(-x)=-f(x),
又f(x)≠0,
∴f(x)f(-x)=-[f(x)]2<0.]
3.函数f(x)=2x-的图像关于( )
A.y轴对称 B.直线y=-x对称
C.直线y=x对称 D.坐标原点对称
D [函数的定义域为(-∞,0)∪(0,+∞),
则f(-x)=-2x+=-=-f(x),
则函数f(x)是奇函数,则函数f(x)=2x-的图像关于坐标原点对称.故选D.]
4.下列函数为奇函数的是( )
A.y=-|x| B.y=2-x
C.y= D.y=-x2+8
C [A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数.]
5.下列说法中错误的个数为( )
①图像关于坐标原点对称的函数是奇函数;
②图像关于y轴对称的函数是偶函数;
③奇函数的图像一定过坐标原点;
④偶函数的图像一定与y轴相交.
A.4 B.3
C.2 D.1
C [由奇函数、偶函数的性质,知①②说法正确;对于③,如f(x)=,x∈(-∞,0)∪(0,+∞),它是奇函数,但它的图像不过原点,所以③说法错误;对于④,如f(x)=,x∈(-∞,0)∪(0,+∞),它是偶函数,但它的图像不与y轴相交,所以④说法错误.故选C.]
二、填空题
6.已知f(x)=x3+2x,则f(a)+f(-a)的值为________.
0 [∵f(-x)=-x3-2x=-f(x),
∴f(-x)+f(x)=0,
∴f(a)+f(-a)=0.]
7.若函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,则m的值是________.
2 [∵f(x)为偶函数,故m-2=0,∴m=2.]
8.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=________.
-5 [由题意知f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.]
三、解答题
9.定义在[-3,-1]∪[1,3]上的函数f(x)是奇函数,其部分图像如图所示.
(1)请在坐标系中补全函数f(x)的图像;
(2)比较f(1)与f(3)的大小.
[解] (1)由于f(x)是奇函数,则其图像关于原点对称,其图像如图所示.
(2)观察图像,知f(3)10.已知函数f(x)=x+,且f(1)=3.
(1)求m的值;
(2)判断函数f(x)的奇偶性.
[解] (1)由题意知,f(1)=1+m=3,
∴m=2.
(2)由(1)知,f(x)=x+,x≠0.
∵f(-x)=(-x)+=-=-f(x),
∴函数f(x)为奇函数.
[等级过关练]
1.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )
A.f(x)g(x)是偶函数
B.|f(x)|g(x)是奇函数
C.f(x)|g(x)|是奇函数
D.|f(x)g(x)|是奇函数
C [∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.
再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选C.]
2.已知f(x)=x5+ax3+bx-8(a,b是常数),且f(-3)=5,则f(3)=( )
A.21 B.-21
C.26 D.-26
B [设g(x)=x5+ax3+bx,则g(x)为奇函数,由题设可得f(-3)=g(-3)-8=5,求得g(-3)=13.又g(x)为奇函数,所以g(3)=-g(-3)=-13,于是f(3)=g(3)-8=-13-8=-21.]
3.设函数f(x)=为奇函数,则a=________.
-1 [∵f(x)为奇函数,∴f(-x)=-f(x),
即=-.
显然x≠0,整理得x2-(a+1)x+a=x2+(a+1)x+a,故a+1=0,得a=-1.]
4.设奇函数f(x)的定义域为[-6,6],当x∈[0,6]时f(x)的图像如图所示,不等式f(x)<0的解集用区间表示为________.
[-6,-3)∪(0,3) [由f(x)在[0,6]上的图像知,满足f(x)<0的不等式的解集为(0,3).又f(x)为奇函数,图像关于原点对称,所以在[-6,0)上,不等式f(x)<0的解集为[-6,-3).综上可知,不等式f(x)<0的解集为[-6,-3)∪(0,3).]
5.已知函数f(x)=是奇函数,且f(1)=3,f(2)=5,求a,b,c的值.
[解] 因为函数f(x)=是奇函数,
所以f(-x)=-f(x),
故=-,
即=-,
所以-bx+c=-(bx+c),即c=-c,解得c=0.
所以f(x)=.而f(1)===3,
所以a+1=3b.①
由f(2)=5,即==5.②
解①②组成的方程组,得
故
课时分层作业(二十五) 零点的存在性及其近似值的求法
(建议用时:60分钟)
[合格基础练]
一、选择题
1.下列函数中,不能用二分法求零点的是( )
A.f(x)=2x+3 B.f(x)=x2+2x-6
C.f(x)=x2-2x+1 D.f(x)=2x-1
C [因为f(x)=x2-2x+1=(x-1)2≥0,即含有零点的区间[a,b]不满足f(a)·f(b)<0,故选C.]
2.下列关于函数f(x),x∈[a,b]的命题中,正确的是( )
A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点
B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值
C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点
D.用二分法求方程的根时,得到的都是近似解
A [使用“二分法”必须满足“二分法”的使用条件,B不正确;f(x)=0的根也一定是函数f(x)的零点,C不正确;用二分法求方程的根时,得到的也可能是精确解,D不正确,只有A正确.]
3.若函数f(x)=2ax2-x-1在(0,1)内恰有一 个零点,则a的取值范围是( )
A.a<-1 B.a>1
C.-1<a<1 D.0≤a<1
B [由题意知f(0)·f(1)<0,即 (-1)·(2a-2)<0,∴a>1.]
4.函数y=f(x)的图像在区间[1,4]上是连续不断的曲线,且 f(1)· f(4)<0,则函数y= f(x)( )
A.在(1,4)内有且仅有一个零点
B.在(1,4)内至少有一个零点
C.在(1,4)内至多有一个零点
D.在(1,4)内不一定有零点
B [可作出y=f(x)图像的草图(图略),知y= f(x)在[1,4]内至少有一个零点.]
5.若函数f(x)=x3+x2-2x-2的一个零点(正数)附近的函数值用二分法逐次计算,参考数据如下表:
f(1)=-2
f(1.5)=0.625
f(1.25)≈-0.984
f(1.375)≈-0.260
f(1.437 5)≈0.162
f(1.406 25)≈-0.054
那么方程x3+x2-2x-2=0的一个近似解(精确度为0.04)为( )
A.1.5 B.1.25
C.1.375 D.1.437 5
D [由参考数据知,f(1.406 25)≈-0.054,f(1.437 5)≈0.162,即f(1.406 25)·f(1.437 5)<0,且1.437 5-1.406 25=0.031 25<0.04,所以方程的一个近似解可取为1.43 75,故选D.]
二、填空题
6.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算得f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.
(0,0.5),f(0.25) [∵f(0)<0,f(0.5)>0,∴f(0)·f(0.5)<0,故f(x)的一个零点x0∈(0,0.5),利用二分法,则第二次应计算f=f(0.25).]
7.用二分法求方程f(x)=0在[0,1]内的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.687 5)<0,即可得出方程的一个近似解为________(精确度为0.1).
0.75(答案不唯一) [因为|0.75-0.687 5|=0.062 5<0.1,所以区间[0.687 5,0.75]内的任何一个值都可作为方程的近似解.]
8.在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量小一点),现在只有一台天平,则应用二分法的思想,最多称________次就可以发现这枚假币.
4 [将26枚金币平均分成两份,分别放在天平两端,则假币一定在质量小的那13枚金币里面;从这13枚金币中拿出1枚,然后将剩下的12枚金币平均分成两份,分别放在天平两端,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在质量小的那6枚金币里面;将这6枚金币平均分成两份,分别放在天平两端,则假币一定在质量小的那3枚金币里面;从这3枚金币中任拿出2枚,分别放在天平两端,若天平平衡,则剩下的那一枚即是假币,若不平衡,则质量小的那一枚即是假币.综上可知,最多称4次就可以发现这枚假币.]
三、解答题
9.判断函数f(x)=2x3-1的零点个数,并用二分法求零点的近似值(精确度0.1).
[解] f(0)=-1<0,f(1)=1>0,即f(0)·f(1)<0,
f(x)在(0,1)内有零点,又f(x)在(-∞,+∞)上是增函数,
∴f(x)只有一个零点x0∈(0,1).
取区间(0,1)的中点x1=0.5,f(0.5)=-0.75<0,
∴f(0.5)·f(1)<0,即x0∈(0.5,1).
取区间(0.5,1)的中点x2=0.75,
f(0.75)=-0.156 25<0,
∴f(0.75)·f(1)<0.即x0∈(0.75,1).
取区间(0.75,1)的中点x3=0.875,f(0.875)≈0.34>0.
∴f(0.75)·f(0.875)<0.即x0∈(0.75,0.875).
取区间(0.75,0.875)的中点x4=0.812 5,
f(0.812 5)≈0.073>0.
∴f(0.75)·f(0.812 5)<0,
即x0∈(0.75,0.812 5),而|0.812 5-0.75|<0.1.
所以,f(x)的零点的近似值可取为0.75.
10.甲从A地以每小时60 km的速度向B地匀速行驶,15分钟后,乙从A地出发加速向甲追去,已知乙距A地的路程s(km)与时间t(h)的关系为s=20t2,求乙多长时间可追上甲.(精确到0.1)
[解] 设乙经过t(h)可追上甲,
则60=20t2,整理得4t2-12t-3=0,
设f(t)=4t2-12t-3,
∵f(3)=-3<0,f(4)=13>0,
∴函数f(t)=4t2-12t-3在(3,4)上必有一零点,即方程4t2-12t-3=0在(3,4)上必有一实数根.
设该实数根为t0,则t0∈(3,4),用二分法可知:t0∈(3,3.5),t0∈(3,3.25),t0∈(3.125,3.25),t0∈(3.187 5,3.25),t0∈(3.218 75,3.25),t0∈(3.218 75,3.234 375).由于区间的两个端点值精确到0.1时都是3.2,故t0=3.2,即乙需3.2小时可追上甲.
[等级过关练]
1.利用计算器,列出自变量和函数值的对应关系如下表:
x
0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4
…
y=2x
1.149
1.516
2.0
2.639
3.482
4.595
6.063
8.0
10.556
…
y=x2
0.04
0.36
1.0
1.96
3.24
4.84
6.76
9.0
11.56
…
那么方程2x=x2的一个根位于下列哪个区间内( )
A.(0.6,1.0) B.(1.4,1.8)
C.(1.8,2.2) D.(2.6,3.0)
C [设f(x)=2x-x2,根据列表有f(0.2)>0,f(0.6)>0,f(1.0)>0,f(1.4)>0,f(1.8)>0,f(2.2)<0,f(2.6)<0,f(3.0)<0,f(3.4)<0.因此方程的一个根在区间(1.8,2.2)内.]
2.用二分法求函数的零点,函数的零点总位于区间[an,bn](n∈N)上,当|an-bn|<m时,函数的零点近似值x0=与真实零点a的误差最大不超过( )
A. B.
C.m D.2m
B [假设a∈,因为|x0-a|=≤=<.
选B.]
3.如果一个正方形的体积在数值上等于V,表面积在数值上等于S,且V=S+1,那么这个正方体的棱长(精确度为0.01)约为________.
6.03 [设正方体的棱长为x,则V=x3,S=6x2,∵V=S+1,∴x3=6x2+1.设f(x)=x3-6x2-1,应用二分法得方程的近似解为6.03.]
4.方程|x2-2x|=a2+1(a>0)的解的个数是________.
2 [(数形结合法)
∵a>0,∴a2+1>1.而y=|x2-2x|的图像如图,
∴y=|x2-2x|的图像与y=a2+1的图像总有2个交点.]
5.已知函数f(x)=x3+x.
(1)试求函数y=f(x)的零点;
(2)是否存在自然数n,使f(n)=1 000?若存在,求出n,若不存在,请说明理由.
[解] (1)函数y=f(x)的零点即方程x3+x=0的实数根,解方程得x=0.
(2)计算得f(9)=738,f(10)=1 010,由函数f(x)=x3+x在区间(0,+∞)单调递增,可知不存在自然数n,使f(n)=1 000成立.