3.1.3 函数的奇偶性
第1课时 奇偶性的概念
学 习 目 标
核 心 素 养
1.理解奇函数、偶函数的定义.
2.了解奇函数、偶函数图像的特征.
3.掌握判断函数奇偶性的方法.
1.借助奇(偶)函数的特征,培养直观想象素养.
2.借助函数奇、偶的判断方法,培养逻辑推理素养.
函数的奇偶性
奇偶性
偶函数
奇函数
条件
设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D
结论
f(-x)=f(x)
f(-x)=-f(x)
图像特点
关于y轴对称
关于原点对称
思考:具有奇偶性的函数,其定义域有何特点?
提示:定义域关于原点对称.
1.下列函数是偶函数的是( )
A.y=x B.y=2x2-3
C.y= D.y=x2,x∈[0,1]
B [选项C、D中函数的定义域不关于原点对称,选项A中的函数是奇函数,故选B.]
2.下列图像表示的函数具有奇偶性的是( )
A B C D
B [B选项的图像关于y轴对称,是偶函数,其余选项中的图像都不具有奇偶性.]
3.函数y=f(x),x∈[-1,a](a>-1)是奇函数,则a等于( )
A.-1 B.0 C.1 D.无法确定
C [∵奇函数的定义域关于原点对称,∴a-1=0,即a=1.]
4.若f(x)为R上的偶函数,且f(2)=3,则f(-2)=________.
3 [∵f(x)为R上的偶函数,∴f(-2)=f(2)=3.]
函数奇偶性的判断
【例1】 判断下列函数的奇偶性:
(1)f(x)=x3+x;
(2)f(x)=+;
(3)f(x)=;
(4)f(x)=
[解] (1)函数的定义域为R,关于原点对称.
又f(-x)=(-x)3+(-x)=-(x3+x)=-f(x),
因此函数f(x)是奇函数.
(2)由得x2=1,即x=±1.
因此函数的定义域为{-1,1},关于原点对称.
又f(1)=f(-1)=-f(-1)=0,所以f(x)既是奇函数又是偶函数.
(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),
不关于原点对称,所以f(x)既不是奇函数也不是偶函数.
(4)函数f(x)的定义域为R,关于原点对称.
f(-x)=
即f(-x)=
于是有f(-x)=-f(x).所以f(x)为奇函数.
判断函数奇偶性的两种方法
(1)定义法:
(2)图像法:
1.下列函数中,是偶函数的有________.(填序号)
①f(x)=x3;②f(x)=|x|+1;③f(x)=;
④f(x)=x+;⑤f(x)=x2,x∈[-1,2].
②③ [对于①,f(-x)=-x3=-f(x),则为奇函数;
对于②,f(-x)=|-x|+1=|x|+1,则为偶函数;
对于③,定义域为{x|x≠0},关于原点对称,f(-x)===f(x),则为偶函数;
对于④,定义域为{x|x≠0},关于原点对称,f(-x)=-x-=-f(x),则为奇函数;
对于⑤,定义域为[-1,2],不关于原点对称,不具有奇偶性,则为非奇非偶函数.]
奇偶函数的图像问题
【例2】 已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图像如图所示.
(1)画出在区间[-5,0]上的图像;
(2)写出使f(x)<0的x的取值集合.
[解] (1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图像关于原点对称.
由y=f(x)在[0,5]上的图像,可知它在[-5,0]上的图像,如图所示.
(2)由图像知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).
(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.
[解] (1)如图所示
(2)由(1)可知,使函数值y<0的x的取值集合为(-5,-2)∪(2,5).
巧用奇、偶函数的图像求解问题
?1?依据:奇函数?图像关于原点对称,偶函数?图像关于y轴对称.
?2?求解:根据奇、偶函数图像的对称性可以解决诸如求函数值或画出奇偶函数图像的问题.
2.如图是函数f(x)=在区间[0,+∞)上的图像,请据此在该坐标系中补全函数f(x)在定义域内的图像,并说明你的作图依据.
[解] 因为f(x)=,所以f(x)的定义域为R.又对任意x∈R,都有f(-x)===f(x),所以f(x)为偶函数.所以f(x)的图像关于y轴对称,其图像如图所示.
利用函数的奇偶性求值
[探究问题]
1.对于定义域内的任意x,若f(-x)+f(x)=0,则函数f(x)是否具有奇偶性?若f(-x)-f(x)=0呢?
提示:由f(-x)+f(x)=0得f(-x)=-f(x),
∴f(x)为奇函数.
由f(-x)-f(x)=0得f(-x)=f(x),∴f(x)为偶函数.
2.若f(x)是奇函数且在x=0处有定义,则f(0)的值可求吗?若f(x)为偶函数呢?
提示:若f(x)为奇函数,则f(0)=0;若f(x)为偶函数,无法求出f(0)的值.
【例3】 (1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;
(2)已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,则f(3)=________.
[思路点拨]
(1) 0 (2)7 [(1)因为偶函数的定义域关于原点对称,所以a-1=-2a,解得a=.
又函数f(x)=x2+bx+b+1为二次函数,结合偶函数图像的特点,易得b=0.
(2)令g(x)=x7-ax5+bx3+cx,则g(x)是奇函数,
∴f(-3)=g(-3)+2=-g(3)+2,又f(-3)=-3,
∴g(3)=5.
又f(3)=g(3)+2,所以f(3)=5+2=7.]
利用奇偶性求参数的常见类型及策略
?1?定义域含参数:奇、偶函数f?x?的定义域为[a,b],根据定义域关于原点对称,利用a+b=0求参数.
?2?解析式含参数:根据f?-x?=-f?x?或f?-x?=f?x?列式,比较系数即可求解.
3.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.
4 [法一:f(x)=(x+a)(x-4)=x2+(a-4)x-4a,f(-x)=(-x+a)(-x-4)=x2-(a-4)x-4a,两式恒相等,则a-4=0,即a=4.
法二:f(x)=(x+a)(x-4)=x2+(a-4)x-4a,要使函数为偶函数,只需多项式的奇次项系数为0,即a-4=0,则a=4.
法三:根据二次函数的奇偶性可知,形如f(x)=ax2+c的都是偶函数,因而本题只需将解析式看成是平方差公式,则a=4.]
1.奇偶性是函数“整体”性质,只有对函数f(x)定义域内的每一个值x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇函数(或偶函数).
2.函数的奇偶性是其相应图像特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.
1.思考辨析
(1)函数f(x)=x2,x∈[0,+∞)是偶函数.( )
(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.( )
(3)不存在既是奇函数,又是偶函数的函数.( )
(4)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.( )
[答案] (1)× (2)× (3)× (4)×
2.函数f(x)=|x|+1是( )
A.奇函数 B.偶函数
C.既是奇函数又是偶函数 D.非奇非偶函数
B [∵f(-x)=|-x|+1=|x|+1=f(x),
∴f(x)为偶函数.]
3.已知函数f(x)=ax2+2x是奇函数,则实数a=______.
0 [∵f(x)为奇函数,∴f(-x)+f(x)=0,∴2ax2=0对任意x∈R恒成立,所以a=0.]
4.已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图像,如图所示.
(1)请补充完整函数y=f(x)的图像;
(2)根据图像写出函数y=f(x)的增区间;
(3)根据图像写出使f(x)<0的x的取值集合.
[解] (1)由题意作出函数图像如图:
(2)据图可知,单调增区间为(-1,0),(1,+∞).
(3)据图可知,使f(x)<0的x的取值集合为(-2,0)∪(0,2).
课件42张PPT。第三章 函数3.1 函数的概念与性质
3.1.3 函数的奇偶性
第1课时 奇偶性的概念原点y轴函数奇偶性的判断奇偶函数的图像问题利用函数的奇偶性求值点击右图进入…Thank you for watching !第2课时 奇偶性的应用
学 习 目 标
核 心 素 养
1.会根据函数奇偶性求函数值或解析式.
2.能利用函数的奇偶性与单调性分析、解决较简单的问题.
1.利用奇偶性求函数的解析式,培养逻辑推理素养.
2.借助奇偶性与单调性的应用,提升逻辑推理、数学运算素养.
用奇偶性求解析式
【例1】 (1)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+1,求f(x)的解析式;
(2)设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=,求函数f(x),g(x)的解析式.
[思路点拨] (1)
(2)
[解] (1)设x<0,则-x>0,
∴f(-x)=-(-x)+1=x+1,
又∵函数f(x)是定义域为R的奇函数,
∴f(-x)=-f(x)=x+1,
∴当x<0时,f(x)=-x-1.
又x=0时,f(0)=0,
所以f(x)=
(2)∵f(x)是偶函数,g(x)是奇函数,
∴f(-x)=f(x),g(-x)=-g(x).
由f(x)+g(x)=, ①
用-x代替x得f(-x)+g(-x)=,
∴f(x)-g(x)=, ②
(①+②)÷2,得f(x)=;
(①-②)÷2,得g(x)=.
把本例(2)的条件“f(x)是偶函数,g(x)是奇函数”改为“f(x)是奇函数,g(x)是偶函数”,再求f(x),g(x)的解析式.
[解] ∵f(x)是奇函数,g(x)是偶函数,
∴f(-x)=-f(x),g(-x)=g(x),
又f(x)+g(x)=, ①
用-x代替上式中的x,得
f(-x)+g(-x)=,
即f(x)-g(x)= .②
联立①②得
f(x)=,g(x)=.
利用函数奇偶性求解析式的方法
?1?“求谁设谁”,即在哪个区间上求解析式,x就应在哪个区间上设.
?2?要利用已知区间的解析式进行代入.
?3?利用f?x?的奇偶性写出-f?x?或f?-x?,从而解出f?x?.
提醒:若函数f?x?的定义域内含0且为奇函数,则必有f?0?=0,但若为偶函数,未必有f?0?=0.
函数单调性和奇偶性的综合问题
[探究问题]
1.如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(-b,-a)上的单调性如何?
如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上的单调性如何?
提示:如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(-b,-a)上单调递增;如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上单调递增.
2.你能否把上述问题所得出的结论用一句话概括出来?
提示:奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.
3.若偶函数f(x)在(-∞,0)上单调递增,那么f(3)和f(-2)的大小关系如何?若f(a)>f(b),你能得到什么结论?
提示:f(-2)>f(3),若f(a)>f(b),则|a|<|b|.
角度一 比较大小问题
【例2】 函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是( )
A.f(1)
B.fC.fD.f[思路点拨] ―→
B [∵函数f(x+2)是偶函数,
∴函数f(x)的图像关于直线x=2对称,∴f=f,f=f,又f(x)在[0,2]上单调递增,
∴f比较大小的求解策略
看自变量是否在同一单调区间上.
(1)在同一单调区间上,直接利用函数的单调性比较大小;
(2)不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.
1.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )
A.f(π)>f(-3)>f(-2)
B.f(π)>f(-2)>f(-3)
C.f(π)<f(-3)<f(-2)
D.f(π)<f(-2)<f(-3)
A [由偶函数与单调性的关系知,若x∈[0,+∞)时,f(x)是增函数,则x∈(-∞,0)时,f(x)是减函数,故其图像的几何特征是自变量的绝对值越小,则其函数值越
小,∵|-2|<|-3|<π,∴f(π)>f(-3)>f(-2),故选A.]
角度二 解不等式问题
【例3】 已知定义在[-2,2]上的奇函数f(x)在区间[0,2]上是减函数,若f(1-m)[解] 因为f(x)在区间[-2,2]上为奇函数,且在区间[0,2]上是减函数,所以f(x)在[-2,2]上为减函数.
又f(1-m)即解得-1≤m<.
故实数m的取值范围是.
解有关奇函数f?x?的不等式f?a?+f?b?<0,先将f?a?+f?b?<0变形为f?a?<-f?b?=f?-b?,再利用f?x?的单调性去掉“f”,化为关于a,b的不等式.另外,要特别注意函数的定义域.
由于偶函数在关于原点对称的两个区间上的单调性相反,所以我们要利用偶函数的性质f?x?=f?|x|?=f?-|x|?将f?g?x??中的g?x?全部化到同一个单调区间内,再利用单调性去掉符号f,使不等式得解.
2.函数f(x)是定义在实数集上的偶函数,且在[0,+∞)上是增函数,f(3)A.a>1 B.a<-2
C.a>1或a<-2 D.-1C [因为函数f(x)在实数集上是偶函数,且f(3)1或a<-2.故选C.]
1.具有奇偶性的函数的单调性的特点
(1)奇函数在[a,b]和[-b,-a]上具有相同的单调性.
(2)偶函数在[a,b]和[-b,-a]上具有相反的单调性.
2.利用函数奇偶性求函数解析式的关键是利用奇偶函数的关系式f(-x)=-f(x)或f(-x)=f(x),但要注意求给定哪个区间的解析式就设这个区间上的变量为x,然后把x转化为-x(另一个已知区间上的解析式中的变量),通过适当推导,求得所求区间上的解析式.
3.偶函数的一个重要性质:f(|x|)=f(x),它能使自变量化归到[0,+∞)上,避免分类讨论.
1.思考辨析
(1)奇函数f(x)=,当x>0时的解析式与x<0时的解析式相同,所以一般的奇函数在(0,+∞)上的解析式与(-∞,0)上的解析式也相同.( )
(2)对于偶函数f(x),恒有f(x)=f(|x|).( )
(3)若存在x0使f(1-x0)=f(1+x0),则f(x)关于直线x=1对称.( )
(4)若奇函数f(x)在(0,+∞)上有最小值a,则f(x)在(-∞,0)上有最大值-a.( )
[答案] (1)× (2)√ (3)× (4)√
2.已知偶函数在(-∞,0)上单调递增,则( )
A.f(1)>f(2) B.f(1)C.f(1)=f(2) D.以上都有可能
A [∵f(x)是偶函数,且在(-∞,0)上单调递增,
∴f(x)在(0,+∞)上单调递减,∴f(1)>f(2),故选A.]
3.定义在R上的偶函数f(x)在[0,+∞)上是增函数,若f(a)A.ab
C.|a|<|b| D.0≤ab≥0
C [∵f(x)是R上的偶函数,且在[0,+∞)上是增函数,
∴由f(a)4.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x-2,求f(x),g(x)的表达式.
[解] f(-x)+g(-x)=x2-x-2,由f(x)是偶函数,g(x)是奇函数得,f(x)-g(x)=x2-x-2,又f(x)+g(x)=x2+x-2,两式联立得f(x)=x2-2,g(x)=x.
课件35张PPT。第三章 函数3.1 函数的概念与性质
3.1.3 函数的奇偶性
第2课时 奇偶性的应用用奇偶性求解析式函数单调性和奇偶性的综合问题点击右图进入…Thank you for watching !课时分层作业(二十二) 奇偶性的概念
(建议用时:60分钟)
[合格基础练]
一、选择题
1.设f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2-x,则f(1)=( )
A.- B.-
C. D.
A [因为f(x)是定义在R上的奇函数,所以f(1)=-f(-1)=-.]
2.若函数f(x)(f(x)≠0)为奇函数,则必有( )
A.f(x)f(-x)>0 B.f(x)f(-x)<0
C.f(x)f(-x)
B [∵f(x)为奇函数,
∴f(-x)=-f(x),
又f(x)≠0,
∴f(x)f(-x)=-[f(x)]2<0.]
3.函数f(x)=2x-的图像关于( )
A.y轴对称 B.直线y=-x对称
C.直线y=x对称 D.坐标原点对称
D [函数的定义域为(-∞,0)∪(0,+∞),
则f(-x)=-2x+=-=-f(x),
则函数f(x)是奇函数,则函数f(x)=2x-的图像关于坐标原点对称.故选D.]
4.下列函数为奇函数的是( )
A.y=-|x| B.y=2-x
C.y= D.y=-x2+8
C [A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数.]
5.下列说法中错误的个数为( )
①图像关于坐标原点对称的函数是奇函数;
②图像关于y轴对称的函数是偶函数;
③奇函数的图像一定过坐标原点;
④偶函数的图像一定与y轴相交.
A.4 B.3
C.2 D.1
C [由奇函数、偶函数的性质,知①②说法正确;对于③,如f(x)=,x∈(-∞,0)∪(0,+∞),它是奇函数,但它的图像不过原点,所以③说法错误;对于④,如f(x)=,x∈(-∞,0)∪(0,+∞),它是偶函数,但它的图像不与y轴相交,所以④说法错误.故选C.]
二、填空题
6.已知f(x)=x3+2x,则f(a)+f(-a)的值为________.
0 [∵f(-x)=-x3-2x=-f(x),
∴f(-x)+f(x)=0,
∴f(a)+f(-a)=0.]
7.若函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,则m的值是________.
2 [∵f(x)为偶函数,故m-2=0,∴m=2.]
8.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=________.
-5 [由题意知f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.]
三、解答题
9.定义在[-3,-1]∪[1,3]上的函数f(x)是奇函数,其部分图像如图所示.
(1)请在坐标系中补全函数f(x)的图像;
(2)比较f(1)与f(3)的大小.
[解] (1)由于f(x)是奇函数,则其图像关于原点对称,其图像如图所示.
(2)观察图像,知f(3)10.已知函数f(x)=x+,且f(1)=3.
(1)求m的值;
(2)判断函数f(x)的奇偶性.
[解] (1)由题意知,f(1)=1+m=3,
∴m=2.
(2)由(1)知,f(x)=x+,x≠0.
∵f(-x)=(-x)+=-=-f(x),
∴函数f(x)为奇函数.
[等级过关练]
1.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )
A.f(x)g(x)是偶函数
B.|f(x)|g(x)是奇函数
C.f(x)|g(x)|是奇函数
D.|f(x)g(x)|是奇函数
C [∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.
再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选C.]
2.已知f(x)=x5+ax3+bx-8(a,b是常数),且f(-3)=5,则f(3)=( )
A.21 B.-21
C.26 D.-26
B [设g(x)=x5+ax3+bx,则g(x)为奇函数,由题设可得f(-3)=g(-3)-8=5,求得g(-3)=13.又g(x)为奇函数,所以g(3)=-g(-3)=-13,于是f(3)=g(3)-8=-13-8=-21.]
3.设函数f(x)=为奇函数,则a=________.
-1 [∵f(x)为奇函数,∴f(-x)=-f(x),
即=-.
显然x≠0,整理得x2-(a+1)x+a=x2+(a+1)x+a,故a+1=0,得a=-1.]
4.设奇函数f(x)的定义域为[-6,6],当x∈[0,6]时f(x)的图像如图所示,不等式f(x)<0的解集用区间表示为________.
[-6,-3)∪(0,3) [由f(x)在[0,6]上的图像知,满足f(x)<0的不等式的解集为(0,3).又f(x)为奇函数,图像关于原点对称,所以在[-6,0)上,不等式f(x)<0的解集为[-6,-3).综上可知,不等式f(x)<0的解集为[-6,-3)∪(0,3).]
5.已知函数f(x)=是奇函数,且f(1)=3,f(2)=5,求a,b,c的值.
[解] 因为函数f(x)=是奇函数,
所以f(-x)=-f(x),
故=-,
即=-,
所以-bx+c=-(bx+c),即c=-c,解得c=0.
所以f(x)=.而f(1)===3,
所以a+1=3b.①
由f(2)=5,即==5.②
解①②组成的方程组,得
故
课时分层作业(二十三) 奇偶性的应用
(建议用时:60分钟)
[合格基础练]
一、选择题
1.已知函数y=f(x)为奇函数,且当x>0时,f(x)=x2-2x+3,则当x<0时,f(x)的解析式是( )
A.f(x)=-x2+2x-3 B.f(x)=-x2-2x-3
C.f(x)=x2-2x+3 D.f(x)=-x2-2x+3
B [若x<0,则-x>0,因为当x>0时,f(x)=x2-2x+3,所以f(-x)=x2+2x+3,因为函数f(x)是奇函数,所以f(-x)=x2+2x+3=-f(x),所以f(x)=-x2-2x-3,所以x<0时,f(x)=-x2-2x-3.故选B.]
2.已知f(x)是偶函数,且在区间[0,+∞)上是增函数,则f(-0.5),f(-1),f(0)的大小关系是( )
A.f(-0.5)<f(0)<f(-1)
B.f(-1)<f(-0.5)<f(0)
C.f(0)<f(-0.5)<f(-1)
D.f(-1)<f(0)<f(-0.5)
C [∵函数f(x)为偶函数,∴f(-0.5)=f(0.5),f(-1)=f(1).又∵f(x)在区间[0,+∞)上是增函数,∴f(0)<f(0.5)<f(1),即f(0)<f(-0.5)<f(-1),故选C.]
3.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调递增区间为( )
A.(-∞,0] B.[0,+∞)
C.(-∞,+∞) D.[1,+∞)
A [因为函数为偶函数,所以a+2=0,a=-2,即该函数为f(x)=-2x2+1,所以函数在(-∞,0]上单调递增.]
4.一个偶函数定义在区间[-7,7]上,它在[0,7]上的图像如图,下列说法正确的是( )
A.这个函数仅有一个单调增区间
B.这个函数有两个单调减区间
C.这个函数在其定义域内有最大值是7
D.这个函数在其定义域内有最小值是-7
C [根据偶函数在[0,7]上的图像及其对称性,作出函数在[-7,7]上的图像,如图所示,可知这个函数有三个单调增区间;有三个单调减区间;在其定义域内有最大值是7;在其定义域内最小值不是-7.故选C.
5.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)A. B.
C. D.
A [由题意得|2x-1|-<2x-1<2x二、填空题
6.函数f(x)在R上为偶函数,且x>0时,f(x)=+1,则当x<0时,f(x)=________.
+1 [∵f(x)为偶函数,x>0时,f(x)=+1,
∴当x<0时,-x>0,
f(x)=f(-x)=+1,
即x<0时,f(x)=+1.]
7.偶函数f(x)在(0,+∞)内的最小值为2 019,则f(x)在(-∞,0)上的最小值为________.
2 019 [由于偶函数的图像关于y轴对称,
所以f(x)在对称区间内的最值相等.
又当x∈(0,+∞)时,f(x)min=2 019,
故当x∈(-∞,0)时,f(x)min=2 019.]
8.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)按从小到大的排列是________.
f(-2)当m≠1时,由题意可知,其图像关于y轴对称,∴m=0,
∴f(x)=-x2+2,
∴f(x)在(-∞,0)上递增,在(0,+∞)上递减.
又0<1<2,∴f(0)>f(1)>f(2)=f(-2).]
三、解答题
9.已知f(x)是定义在(-1,1)上的奇函数,且f(x)在(-1,1)上是减函数,解不等式f(1-x)+f(1-2x)<0.
[解] ∵f(x)是定义在(-1,1)上的奇函数,
∴由f(1-x)+f(1-2x)<0,得
f(1-x)<-f(1-2x),∴f(1-x)又∵f(x)在(-1,1)上是减函数,
∴解得0∴原不等式的解集为.
10.已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.
[解] F(x)在(-∞,0)上是减函数.
证明如下:
任取x1,x2∈(-∞,0),且x1-x2>0.
因为y=f(x)在(0,+∞)上是增函数,且f(x)<0,所以f(-x2)又因为f(x)是奇函数,
所以f(-x2)=-f(x2),f(-x1)=-f(x1),②
由①②得f(x2)>f(x1)>0.于是F(x1)-F(x2)=>0,即F(x1)>F(x2),
所以F(x)=在(-∞,0)上是减函数.
[等级过关练]
1.下列函数中,是偶函数,且在区间(0,1)上为增函数的是( )
A.y=|x| B.y=1-x
C.y= D.y=-x2+4
A [选项B中,函数不具备奇偶性;选项C中,函数是奇函数;选项A,D中的函数是偶函数,但函数y=-x2+4在区间(0,1)上单调递减.故选A.]
2.若奇函数f(x)在(-∞,0)上的解析式为f(x)=x(1+x),则f(x)在(0,+∞)上有( )
A.最大值- B.最大值
C.最小值- D.最小值
B [法一(奇函数的图像特征):当x<0时,
f(x)=x2+x=2-,
所以f(x)有最小值-,因为f(x)是奇函数,
所以当x>0时,f(x)有最大值.
法二(直接法):当x>0时,-x<0,
所以f(-x)=-x(1-x).
又f(-x)=-f(x),
所以f(x)=x(1-x)=-x2+x=-2+,
所以f(x)有最大值.故选B.]
3.如果函数F(x)=是奇函数,则f(x)=________.
2x+3 [当x<0时,-x>0,F(-x)=-2x-3,
又F(x)为奇函数,故F(-x)=-F(x),
∴F(x)=2x+3,即f(x)=2x+3.]
4.已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数.若f(-3)=0,则<0的解集为________.
{x|-33} [∵f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数,
∴f(x)在区间(0,+∞)上是减函数,
∴f(3)=f(-3)=0.当x>0时,f(x)<0,解得x>3;
当x<0时,f(x)>0,解得-35.设定义在[-2,2]上的奇函数f(x)=x5+x3+b.
(1)求b的值;
(2)若f(x)在[0,2]上单调递增,且f(m)+f(m-1)>0,求实数m的取值范围.
[解] (1)因为函数f(x)是定义在[-2,2]上的奇函数,
所以f(0)=0,解得b=0.
(2)因为函数f(x)在[0,2]上是增函数,又因为f(x)是奇函数,所以f(x)在[-2,2]上是单调递增的,
因为f(m)+f(m-1)>0,
所以f(m-1)>-f(m)=f(-m),
所以m-1>-m,①
又需要不等式f(m)+f(m-1)>0在函数f(x)定义域范围内有意义.
所以②
解①②得所以m的取值范围为.