(新教材)人教B版数学必修第一册 2.2.2 不等式的解集2.2.3 一元二次不等式的解法:74张PPT

文档属性

名称 (新教材)人教B版数学必修第一册 2.2.2 不等式的解集2.2.3 一元二次不等式的解法:74张PPT
格式 zip
文件大小 4.1MB
资源类型 教案
版本资源 人教B版(2019)
科目 数学
更新时间 2019-09-20 18:25:29

文档简介

2.2.2 不等式的解集
2.2.3 一元二次不等式的解法
学 习 目 标
核 心 素 养
1.掌握不等式的解集及不等式组的解集.
2.解绝对值不等式.(重点、难点)
3.掌握一元二次不等式的解法.(重点)
4.能根据“三个二次”之间的关系解决简单问题.(难点)
1.通过数学抽象理解绝对值不等式.
2.通过一元二次不等式的学习,培养数学运算素养.
1.不等式的解集与不等式组的解集
一般地,不等式的所有解组成的集合称为不等式的解集.对于由若干个不等式联立得到的不等式组来说,这些不等式的解集的交集称为不等式组的解集.
2.绝对值不等式
一般地,含有绝对值的不等式称为绝对值不等式.
思考1:你能总结出若a>0,|x|>a与|x|<a的解集吗?
提示:
不等式
|x|<a
|x|>a
解集
{x|-a<x<a}
{x|x>a或x<-a}
3.数轴上两点之间的距离公式、中点坐标公式
一般地,如果实数a,b在数轴上对应的点分别为A,B,即A(a),B(b),则线段AB的长为AB=|a-b|,这就是数轴上两点之间的距离公式.数轴上线段AB的中点坐标公式为x=.
4.一元二次不等式的概念
一般地,形如ax2+bx+c>0的不等式称为一元二次不等式,其中a,b,c是常数,而且a≠0.
5.一元二次不等式的一般形式
(1)ax2+bx+c>0(a≠0).
(2)ax2+bx+c≥0(a≠0).
(3)ax2+bx+c<0(a≠0).
(4)ax2+bx+c≤0(a≠0).
思考2:不等式x2-y2>0是一元二次不等式吗?
提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.
6.一元二次不等式的解与解集
使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.
思考3:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?
提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.
7.三个“二次”的关系
设y=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac
判别式
Δ>0
Δ=0
Δ<0
解不等式y>0或y<0的步骤
求方程y=0的解
有两个不相等的实数根x1,x2(x1<x2)
有两个相等的实数根x1=x2=-
没有
实数根
画函数y=ax2+bx+c(a>0)
的图像
  
思考4:若一元二次不等式ax2+x-1>0的解集为R,则实数a应满足什么条件?
提示:结合二次函数图像可知,若一元二次不等式ax2+x-1>0的解集为R,则解得a∈?,所以不存在a使不等式ax2+x-1>0的解集为R.
1.不等式组的解集为(  )
A.   B.
C. D.
D [因为2x+1>0,∴x>-,3x-2≤0,∴x≤,不等式组的解集为.]
2.不等式3x2-2x+1>0的解集为(  )
A.    B.
C.? D.R
D [因为Δ=(-2)2-4×3×1=4-12=-8<0,所以不等式3x2-2x+1>0的解集为R.]
3.不等式|x|-3<0的解集为________.
{x|-3<x<3} [不等式变形为|x|<3,解集为{x|-3<x<3}.]
4.不等式-3x2+5x-4>0的解集为________.
? [原不等式变形为3x2-5x+4<0.因为Δ=(-5)2-4×3×4=-23<0,所以3x2-5x+4=0无解.
由函数y=3x2-5x+4的图像可知,3x2-5x+4<0的解集为?.]
求不等式组的解集
【例1】 不等式组的解集是(  )
A.x>-3      B.-3≤x<2
C.-3<x≤2 D.x≤2
C [
解不等式①得:x≤2,解不等式②得:x>-3,
∴不等式组的解集为-3<x≤2,故选C.]
一元一次不等式组解集的求解策略
(1)一元一次不等式组的解集就是每个不等式解集的交集;
(2)求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
1.解不等式组并在数轴上表示该不等式组的解集.
[解] 
由①得,x<3,
由②得,x≥-1,
故此不等式组的解集为-1≤x<3,
在数轴上表示为:
解绝对值不等式
【例2】 不等式|5-4x|>9的解集为________.
 [∵|5-4x|>9,∴5-4x>9或5-4x<-9.
∴4x<-4或4x>14,
∴x<-1或x>.
∴原不等式的解集为.]
1.(变设问)不等式|5-4x|≤9的解集为________.
 [∵|5-4x|≤9,∴-9≤4x-5≤9.
∴-1≤x≤,∴原不等式的解集为
.]
2.(变设问)若不等式|kx-5|≤9的解集为,则实数k=________.
4 [由|kx-5|≤9?-4≤kx≤14.
∵不等式的解集为,
∴k=4.]
1.|x|<a与|x|>a型不等式的解法
不等式
a>0
a=0
a<0
|x|<a
{x|-a<x<a}
?
?
|x|>a
{x|x>a或x<-a}
{x|x∈R且x≠0}
R
2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法
(1)|ax+b|≤c?-c≤ax+b≤c;
(2)|ax+b|≥c?ax+b≥c或ax+b≤-c.
2.不等式2<|2x+3|≤4的解集为(  )
A.
B.
C.
D.
C [∵2<|2x+3|≤4,∴2<2x+3≤4,或-4≤2x+3<-2,∴-<x≤,或-≤x<-,∴不等式的解集为,故选C.]
一元二次不等式的解法
【例3】 解下列不等式:
(1)2x2+7x+3>0;
(2)-4x2+18x-≥0;
(3)-2x2+3x-2<0.
[解] (1)因为Δ=72-4×2×3=25>0,所以方程2x2+7x+3=0有两个不等实根x1=-3,x2=-.又二次函数y=2x2+7x+3的图像开口向上,所以原不等式的解集为.
(2)原不等式可化为2≤0,所以原不等式的解集为.
(3)原不等式可化为2x2-3x+2>0,因为Δ=9-4×2×2=-7<0,所以方程2x2-3x+2=0无实根,又二次函数y=2x2-3x+2的图像开口向上,所以原不等式的解集为R.
解不含参数的一元二次不等式的一般步骤
?1?化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正.
?2?判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式.
?3?求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根.
?4?画草图.根据一元二次方程根的情况画出对应的二次函数的草图.
?5?写解集.根据图像写出不等式的解集.
3.解下列不等式.
(1)2x2-3x-2>0;(2)x2-4x+4>0;
(3)-x2+2x-3<0;(4)-3x2+5x-2>0.
[解] (1)∵Δ>0,方程2x2-3x-2=0的根是x1=-,x2=2,∴不等式2x2-3x-2>0的解集为
.
(2)∵Δ=0,方程x2-4x+4=0的根是x1=x2=2,
∴不等式x2-4x+4>0的解集为.
(3)原不等式可化为x2-2x+3>0,
由于Δ<0,方程x2-2x+3=0无解,
∴不等式-x2+2x-3<0的解集为R.
(4)原不等式可化为3x2-5x+2<0,
由于Δ>0,方程3x2-5x+2=0的两根为x1=,x2=1,
∴不等式-3x2+5x-2>0的解集为.
含参数的一元二次不等式的解法
【例4】 解关于x的不等式ax2-(a+1)x+1<0.
[思路点拨] ①对于二次项的系数a是否分a=0,a<0,a>0三类进行讨论?②当a≠0时,是否还要比较两根的大小?
[解] 当a=0时,原不等式可化为x>1.
当a≠0时,原不等式可化为(ax-1)(x-1)<0.
当a<0时,不等式可化为(x-1)>0,
∵<1,∴x<或x>1.
当a>0时,原不等式可化为(x-1)<0.
若<1,即a>1,则若=1,即a=1,则x∈?;
若>1,即0综上所述,当a<0时,原不等式的解集为x或x>1;当a=0时,原不等式的解集为{x|x>1};当01时,原不等式的解集为.
解含参数的一元二次不等式的一般步骤
提醒:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并.
4.解关于x的不等式:ax2-2≥2x-ax(a<0).
[解] 原不等式移项得ax2+(a-2)x-2≥0,
化简为(x+1)(ax-2)≥0.
∵a<0,∴(x+1)≤0.
当-2当a=-2时,x=-1;
当a<-2时,-1≤x≤.
综上所述,
当-2当a=-2时,解集为{x|x=-1};
当a<-2时,解集为.
 三个“二次”的关系
[探究问题]
1.利用函数y=x2-2x-3的图像说明当y>0、y<0、y=0时x的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?
提示:y=x2-2x-3的图像如图所示.
函数y=x2-2x-3的值满足y>0时自变量x组成的集合,亦即二次函数y=x2-2x-3的图像在x轴上方时点的横坐标x的集合{x|x<-1或x>3};同理,满足y<0时x的取值集合为{x|-1方程ax2+bx+c=0(a≠0)和不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)是函数y=ax2+bx+c(a≠0)的一种特殊情况,它们之间是一种包含关系,也就是当y=0时,函数y=ax2+bx+c(a≠0)就转化为方程,当y>0或y<0时,就转化为一元二次不等式.
2.方程x2-2x-3=0与不等式x2-2x-3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?
提示:方程x2-2x-3=0的解集为{-1,3}.
不等式x2-2x-3>0的解集为{x|x<-1或x>3},观察发现不等式x2-2x-3>0解集的端点值恰好是方程x2-2x-3=0的根.
3.设一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)的解集分别为{x|xx2},{x|x1提示:一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)的解集分别为{x|xx2},{x|x1【例5】 已知关于x的不等式ax2+bx+c>0的解集为{x|2[思路点拨] 
[解] 法一:由不等式ax2+bx+c>0的解集为{x|20,即x2-x+>0,解得x<或x>,所以不等式cx2+bx+a<0的解集为.
法二:由不等式ax2+bx+c>0的解集为{x|21.(变结论)本例中的条件不变,求关于x的不等式cx2-bx+a>0的解集.
[解] 由根与系数的关系知=-5,=6且a<0.
∴c<0,=-,故不等式cx2-bx+a>0,
即x2-x+<0,即x2+x+<0.
解得.
2.(变条件)若将本例中的条件“关于x的不等式ax2+bx+c>0的解集为{x|2[解] 由ax2+bx+c≥0的解集为知a<0.又×2=<0,则c>0.
又-,2为方程ax2+bx+c=0的两个根,
∴-=,∴=-.
又=-,∴b=-a,c=-a,
∴不等式变为x2+x+a<0,
即2ax2+5ax-3a>0.
又∵a<0,∴2x2+5x-3<0,
所求不等式的解集为.
已知以a,b,c为参数的不等式?如ax2+bx+c>0?的解集,求解其他不等式的解集时,一般遵循:
?1?根据解集来判断二次项系数的符号;
?2?根据根与系数的关系把b,c用a表示出来并代入所要解的不等式;
?3?约去 a, 将不等式化为具体的一元二次不等式求解.
1.不等式(组)的解集要写成集合形式,不等式组的解集是每个不等式解集的交集.
2.解绝对值不等式的关键就是去掉绝对值,利用绝对值不等式的几何意义求解,体现了数形结合的思想.
3.解一元二次不等式的常见方法
(1)图像法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:
①化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);
②求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c图像的简图;
③由图像得出不等式的解集.
(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.
当m若(x-m)(x-n)<0,则可得{x|m<x<n}.
有口诀如下:大于取两边,小于取中间.
4.含参数的一元二次型的不等式
在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:
(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.
(2)关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).
(3)关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.
5.由一元二次不等式的解集可以逆推二次函数的开口及与x轴的交点坐标.
1.思考辨析
(1)mx2-5x<0是一元二次不等式.(  )
(2)若a>0,则一元二次不等式ax2+1>0无解.(  )
(3)若一元二次方程ax2+bx+c=0的两根为x1,x2(x1(4)若|x|>c的解集为R,则c≤0.(  )
[提示] (1)错误.当m=0时,是一元一次不等式;当m≠0时,是一元二次不等式.
(2)错误.因为a>0,所以不等式ax2+1>0恒成立,即原不等式的解集为R.
(3)错误.当a>0时,ax2+bx+c<0的解集为{x|x1(4)显然c=0不成立,错误.
[答案] (1)× (2)× (3)× (4)× 
2.已知数轴上A(3),B(-5),则线段AB中点M的坐标为________.
M(-1) [=-1,线段AB中点M的坐标为M(-1).]
3.如果<2和|x|>同时成立,那么x的取值范围是________.
 [由<2可得x<0,或x>.①
再由|x|>可得x>,或x<-.②
把①②取交集可得x的取值范围是.]
4.解下列不等式:
(1)x(7-x)≥12;
(2)x2>2(x-1).
[解] (1)原不等式可化为x2-7x+12≤0,因为方程x2-7x+12=0的两根为x1=3,x2=4,
所以原不等式的解集为{x|3≤x≤4}.
(2)原不等式可以化为x2-2x+2>0,
因为判别式Δ=4-8=-4<0,方程x2-2x+2=0无实根,而抛物线y=x2-2x+2的图像开口向上,
所以原不等式的解集为R.
课件74张PPT。第二章 等式与不等式2.2 不等式
2.2.2 不等式的解集
2.2.3 一元二次不等式的解法绝对值交集解集 求不等式组的解集解绝对值不等式一元二次不等式的解法含参数的一元二次不等式的解法 三个“二次”的关系点击右图进入…Thank you for watching !课时分层作业(十五) 不等式的解集 一元二次不等式的解法
(建议用时:60分钟)
[合格基础练]
一、选择题
1.不等式组的解集是(  )
A.  B.{x|-1<x<3}
C. D.{x|-1<x}
A [由x+1>0?x>-1,2x+1≥0?x≥-,-x+3>0?x<3,各不等式的解集的交集为.]
2.若集合A={x|(2x+1)(x-3)<0},B={x|x∈N*,x≤5},则A∩B等于(  )
A.{1,2,3} B.{1,2}
C.{4,5} D.{1,2,3,4,5}
B [(2x+1)(x-3)<0,∴-又x∈N*且x≤5,则x=1,2.]
3.不等式|x-a|<b的解集是{x|-3<x<9},则a,b的值分别是(  )
A.a=3,b=6 B.a=-3,b=9
C.a=6,b=3 D.a=-3,b=6
A [不等式|x-a|<b,等价于-b<x-a<b,等价于a-b<x<a+b,
再根据不等式|x-a|<b的解集是{x|-3<x<9},可得a-b=-3,a+b=9,
求得a=3,b=6,故选A.]
4.一元二次方程ax2+bx+c=0的两根为-2,3,a<0,那么ax2+bx+c>0的解集为(  )
A.{x|x>3或x<-2} B.{x|x>2或x<-3}
C.{x|-2C [由题意知,-2+3=-,-2×3=,∴b=-a,c=-6a,
∴ax2+bx+c=ax2-ax-6a>0,
∵a<0,∴x2-x-6<0,
∴(x-3)(x+2)<0,
∴-25.在R上定义运算“⊙”:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为(  )
A.0<x<2 B.-2<x<1
C.x<-2或x>1 D.-1<x<2
B [根据给出的定义得,x⊙(x-2)=x(x-2)+2x+(x-2)=x2+x-2=(x+2)(x-1),又x⊙(x-2)<0,则(x+2)(x-1)<0,故不等式的解集是-2<x<1.]
二、填空题
6.已知数轴上A(-1),B(x),C(6),若线段AB的中点到C的距离小于5,则x的取值范围是________.
{x|3<x<23} [设AB的中点为D,则D,因中点到C的距离小于5,可得<5,1<<11,3<x<23.]
7.若关于x的不等式-x2+2x>mx的解集是{x|0<x<2},则实数m的值是________.
1 [将原不等式化为x2+(m-2)x<0,即x(x+2m-4)<0,故0,2是对应方程x(x+2m-4)=0的两个根,代入得m=1.]
8.已知集合A={x|3x-2-x2<0},B={x|x-a<0},且B?A,则a的取值范围为________.
{a|a≤1} [A={x|3x-2-x2<0}={x|x2-3x+2>0}={x|x<1或x>2},B={x|x若B?A,如图,则a≤1.
]
三、解答题
9.求下列不等式的解集:
(1)x2-5x+6>0;
(2)-x2+3x-5>0.
[解] (1)方程x2-5x+6=0有两个不等实数根x1=2,x2=3,又因为函数y=x2-5x+6的图像是开口向上的抛物线,且抛物线与x轴有两个交点,分别为(2,0)和(3,0),其图像如图①.根据图像可得不等式的解集为{x|x>3或x<2}.
(2)原不等式可化为x2-6x+10<0,对于方程x2-6x+10=0,因为Δ=(-6)2-40<0,所以方程无解,又因为函数y=x2-6x+10的图像是开口向上的抛物线,且与x轴没有交点,其图像如图②.根据图像可得不等式的解集为?.
10.解关于x的不等式x2-(3a-1)x+(2a2-2)>0.
[解] 原不等式可化为
[x-(a+1)][x-2(a-1)]>0,
讨论a+1与2(a-1)的大小.
(1)当a+1>2(a-1),即a<3时,x>a+1或x<2(a-1).
(2)当a+1=2(a-1),即a=3时,x≠4.
(3)当a+1<2(a-1),即a>3时,x>2(a-1)或x综上:当a<3时,解集为{x|x>a+1或x<2(a-1)},
当a=3时,解集为{x|x≠4},
当a>3时,解集为{x|x>2(a-1)或x[等级过关练]
1.不等式mx2-ax-1>0(m>0)的解集可能是(  )
A. B.R
C. D.?
A [因为Δ=a2+4m>0,所以函数y=mx2-ax-1的图像与x轴有两个交点,又m>0,所以原不等式的解集不可能是B,C,D,故选A.]
2.若不等式|x-3|<4的解集为{x|a<x<b},则不等式(x+2)(x2-ax-b+1)≤0的解集为(  )
A.(-∞,-3)
B.(-∞,-3)∪{2}
C.(-∞,2)
D.(-∞,-3]∪[-2,2]
D [由|x-3|<4,得-1<x<7.
∵不等式|x-3|<4的解集为{x|a<x<b},
∴a=-1,b=7.
∴由(x+2)(x2-ax-b+1)≤0,得(x+2)(x2+x-6)≤0,
∴(x+2)(x-2)(x+3)≤0,
由数轴标根法可得,x≤-3,或-2≤x≤2.
∴不等式的解集为(-∞,-3]∪[-2,2],故选D.]
3.不等式>1的解集是________.
{x|0<x<3} [∵(x-1)2>0,∴原不等式等价于x+1>(x-1)2,∴x2-3x<0,∴0<x<3,不等式的解集为{x|0<x<3}.]
4.设不等式x2-2ax+a+2≤0的解集为A,若A?{x|1≤x≤3},则a的取值范围为________.
 [设y=x2-2ax+a+2,因为不等式x2-2ax+a+2≤0的解集为A,且A?{x|1≤x≤3},
所以对于方程x2-2ax+a+2=0,
若A=?,则Δ=4a2-4(a+2)<0,
即a2-a-2<0,解得-1<a<2.
若A≠?,

即所以2≤a≤.
综上,a的取值范围为.]
5.已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.
[解] 原不等式可化为(2x-a-1)(x+2a-3)<0,
由x=0适合不等式得(a+1)(2a-3)>0,
所以a<-1或a>.
若a<-1,则-2a+3-=(-a+1)>5,
所以3-2a>,
此时不等式的解集是;
若a>,由-2a+3-=(-a+1)<-,
所以3-2a<,
此时不等式的解集是.
综上,当a<-1时,原不等式的解集为,当a>时,原不等式的解集为.