二元一次方程组解法(一)--代入法(基础)知识讲解
【学习目标】
1. 理解消元的思想;
2. 会用代入法解二元一次方程组.
【要点梳理】
要点一、消元法
1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.
2.消元的基本思路:未知数由多变少.
3.消元的基本方法:把二元一次方程组转化为一元一次方程.
要点二、代入消元法
通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.
要点诠释:
(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.
(2)代入消元法的技巧是:
①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;
②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;
③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.
【典型例题】
类型一、用代入法解二元一次方程组
1.(2018?贵阳)用代入法解方程组: 的解为 .
【思路点拨】直接将下面的式子代入上面的式子,化简整理即可.
【答案与解析】
解:解,
把②代入①得x+2=12,
∴x=10,
∴.
故答案为:.
【总结升华】当方程组中出现一个未知量代替另一个未知量的方程时,一般用直接代入法解方程组.
举一反三:
【变式】若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____.
【答案】3,﹣2.
2. 用代入法解二元一次方程组:
【思路点拨】观察两个方程的系数特点,可以发现方程②中x的系数为1,所以把方程②中的x用y来表示,再代入①中即可.
【答案与解析】
解:由②得x=5-y ③
将③代入①得5(5-y)-2y-4=0,
解得:y=3,把y=3代入③,得x=5-y=5-3=2
所以原方程组的解为.
【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.
举一反三:
【变式1】与方程组有完全相同的解的是( )
A.x+y-2=0
B.x+2y=0
C.(x+y-2)(x+2y)=0
D.
【答案】D
【变式2】若∣x-2y+1∣+(x+y-5)2=0,则 x= , y= .
【答案】3,2.
类型二、由解确定方程组中的相关量
3.(2019?莆田模拟)已知关于x,y的二元一次方程组的解互为相反数,求k的值.
【思路点拨】将x=-y代入第二个方程,解出y的值,再代入上面的方程可得值.
【答案与解析】
解:,
将x=-y代入②得:-y+2y =﹣1,∴y=﹣1,
∴x=1,
将x=1,y=﹣1代入①得,k=1.
【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
举一反三:
【变式】(2018?昆山市二模)已知是二元一次方程组的解,则m﹣n的值是 .
【答案】4
解:把代入方程得:,
解得:m=1,n=﹣3,
则m﹣n=1﹣(﹣3)=1+3=4.
4. 若方程组的解为,试求的值.
【答案与解析】
解:将代入得,即,
解得.
【总结升华】将已知解代入原方程组得关于的方程组,再解关于方程组得的值.
【巩固练习】
一、选择题
1.(2019?河北模拟)利用代入消元法解方程组,下列做法正确的是( )
A.由①得x= B.由①得y=
C.由②得y= D.由②得y=
2.(2018春?苏州期末)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( )
A.4和6 B.6和4 C.2和8 D.8和﹣2
3.对于方程3x-2y-1=0,用含y的代数式表示x,应是( ).
A. B. C. D.
4.已知x+3y=0,则的值为( ).
A. B. C.3 D.-3
5.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设, ,则可得到方程组为( ) .
A. B. C. D.
6.已知是二元一次方程组的解.则a-b的值为( ).
A.-1 B.1 C.2 D.3
二、填空题
7.解方程组若用代入法解,最好是对方程________变形,用含_______的代数式表示________.
8.(2019春?南安市期末)二元一次方程组的解是 .
9.方程组的解满足方程x+y-a=0,那么a的值是________.
10.若方程3x-13y=12的解也是x-3y=2的解,则x=________,y=_______.
11.(2018?泉州)方程组的解是 .
12.三年前父亲的年龄是儿子年龄的4倍,三年后父亲的年龄是儿子年龄的3倍,则父亲现在的年龄是________岁,儿子现在的年龄是________岁.
三、解答题
13.用代入法解下列方程组:
(1) (2)
14.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.
解方程组
解:由②,得y=1-6x ③
将③代入②,得6x+(1-6x)=1(由于x消元,无法继续)
15.(2018?黄冈模拟)若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,求k的值.
【答案与解析】
一、选择题
1.【答案】B;
【解析】解:由①得,2x=6﹣3y,
x=;
3y=6﹣2x,
y=;
由②得,5x=2+3y,
x=,
3y=5x﹣2,
y=.
故选B.
2.【答案】D.
【解析】∵x=5是方程组的解,∴2×5﹣y=12,∴y=﹣2,∴2x+y=2×5﹣2=8,
∴●是8,★是﹣2.故选D.
3. 【答案】D;
【解析】移项,得,系数化1得.
4. 【答案】B;
【解析】由x+3y=0得3y=﹣x,代入.
5. 【答案】D;
6. 【答案】A;
【解析】将代入得,解得.
二、填空题
7. 【答案】②; x, y;
8. 【答案】;
【解析】解:,
把①代入②得:x+2x=3,即x=1,
把x=1代入①得:y=2,
则方程组的解为,
故答案为:
9. 【答案】-5;
【解析】由解得,代入 x+y-a=0,得a=-5.
10.【答案】﹣2.5,﹣1.5;
【解析】联立方程组,解得.
11.【答案】.
12.【答案】51,15;
【解析】设父亲现在的年龄是岁,儿子现在的年龄是.由题意得:
,解得.
三、解答题
13.【解析】
解: (1)由②得x=3-3y③,将③代入①得,5(3-3y)-2y=-2,解得y=1,将y=1代入③得x=0,故.
(2)由①得y=3-2x ③,将③代入②得,3x-5(3-2x)=11,解得x=2,将x=2代入③得y=-1,故.
14.【解析】
解:无法继续的原因是变形所得的③应该代入①,不可代入②.
由②,得y=1-6x ③,将③代入①,得12x-3(1-6x)=7.
解得,将代入③,得y=-1.所以原方程组的解为.
15.【解析】
解:由方程组得:
∵此方程组的解也是方程2x+3y=6的解
∴2×7k+3×(﹣2k)=6
k=.