矩形(基础)
【学习目标】
1. 理解矩形的概念.
2. 掌握矩形的性质定理与判定定理.
【要点梳理】
要点一、矩形的定义
有一个内角是直角的平行四边形叫做矩形.
要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.
要点二、矩形的性质
矩形的性质包括四个方面:
1.矩形具有平行四边形的所有性质;
2.矩形的对角线相等;
3.矩形的四个角都是直角;
4.矩形是轴对称图形,它有两条对称轴.
要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.
(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).
(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.
要点三、矩形的判定
矩形的判定有三种方法:
1.定义:有一个角是直角的平行四边形叫做矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.
要点四、直角三角形斜边上的中线的性质
直角三角形斜边上的中线等于斜边的一半.
推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.
(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.
(3)性质可以用来解决有关线段倍分的问题.
【典型例题】
类型一、矩形的性质
/1、(2018?云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.
(1)求证:∠PNM=2∠CBN;
(2)求线段AP的长.
/
【思路点拨】(1)由MN∥BC,易得∠CBN=∠MNB,由已知∠PNB=3∠CBN,根据角的和差不难得出结论;
(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,由(1)知∠PNM=2∠CBN=2∠PAN,由AD∥MN,可知∠PAN=∠ANM,所以∠PAN=∠PNA,根据等角对等边得到AP=PN,再用勾股定理列方程求出AP.
【答案与解析】
解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,
∴MN∥BC,
∴∠CBN=∠MNB,
∵∠PNB=3∠CBN,
∴∠PNM=2∠CBN;
(2)连接AN,
根据矩形的轴对称性,可知∠PAN=∠CBN,
∵MN∥AD,
∴∠PAN=∠ANM,
由(1)知∠PNM=2∠CBN,
∴∠PAN=∠PNA,
∴AP=PN,
∵AB=CD=4,M,N分别为AB,CD的中点,
∴DN=2,
设AP=x,则PD=6﹣x,
在Rt△PDN中
PD2+DN2=PN2,
∴(6﹣x)2+22=x2,
解得:x=/
所以AP=/.
/
【总结升华】本题主要考查了矩形的性质、勾股定理等知识的综合运用,难度不大,根据角的倍差关系得到∠PAN=∠PNA,发现AP=PN是解决问题的关键.
举一反三:
【变式】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是 _________ .
/
【答案】/;
提示:因为ECFP为矩形,所以有EF=PC.PC最小时是直角三角形斜边上的高.
类型二、矩形的判定
/2、(2019?济宁一模)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:D是BC的中点.
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.
/
【思路点拨】
(1)因为AF∥BC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,故有BD=DC;
(2)由(1)知,AF=DC且AF∥DC,可得四边形AFDC是平行四边形,又因为AD=CF,故可有一个角是直角的平行四边形是矩形进行判定.
【答案与解析】
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE(1分)
∵E是AD的中点,
∴AE=DE.(2分)
∵∠AEF=∠DEC,
∴△AEF≌△DEC.(3分)
∴AF=DC,
∵AF=BD
∴BD=CD,
∴D是BC的中点;(4分)
(2)四边形AFBD是矩形,(5分)
证明:∵AB=AC,D是BC的中点,
∴AD⊥BC,
∴∠ADB=90°,(6分)
∵AF=BD,AF∥BC,
∴四边形AFBD是平行四边形,(7分)
∴四边形AFBD是矩形.
【总结升华】本题考查矩形的判定和全等三角形的判定与性质.要熟知这些判定定理才会灵活运用,根据性质才能得到需要的相等关系.
举一反三:
【变式】如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形.
求证:四边形ADCE是矩形.
/【答案】
证明:∵四边形ABDE是平行四边形, ∴AE∥BC,AB=DE,AE=BD ∵D为BC的中点, ∴CD=BD ∴CD∥AE,CD=AE ∴四边形ADCE是平行四边形 ∵AB=AC ∴AC=DE ∴平行四边形ADCE是矩形./3、如图所示,ABCD四个内角的角平分线分别交于点E、F、G、H.
求证:四边形EFGH是矩形.
/
【思路点拨】AE、BE分别为∠BAD、∠ABC的角平分线,由于在ABCD中,∠BAD+∠ABC=180°,易得∠BAE+∠ABE=90°,不难得到∠HEF=90°,同理可得∠H=∠F=90°.
【答案与解析】
证明:在ABCD中,AD∥BC,
∴ ∠BAD+∠ABC=180°,
∵ AE、BE分别平分∠BAD、∠ABC,
∴ ∠BAE+∠ABE=∠BAD+∠ABC=90°.
∴ ∠HEF=∠AEB=90°.
同理:∠H=∠F=90°.
∴ 四边形EFGH是矩形.
【总结升华】 (1)利用角平分线、垂线得到90°的角,选择“有三个直角的四边形是矩形”来判定.(2)本题没有涉及对角线,所以不会选择利用对角线来判定矩形.
类型三、直角三角形斜边上的中线的性质
/4、如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
A.20 B.12 C.14 D.13
/
【答案】C;
【解析】
解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.
【总结升华】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.
举一反三:
【变式】如图所示,已知平行四边形ABCD,AC、BD相交于点O,P是平行四边形ABCD外一点,且∠APC=∠BPD=90°.求证:平行四边形ABCD是矩形.
/
【答案】
解:连接OP.
∵ 四边形ABCD是平行四边形.
∴ AO=CO,BO=DO,
∵ ∠APC=∠BPD=90°,
∴ OP=AC,OP=BD,
∴ AC=BD.
∴ 四边形ABCD是矩形.
【巩固练习】
一.选择题
1.(2018春?宜兴市校级期中)下列说法中正确的是( )
A. 对角线相等的四边形是矩形
B. 对角线互相垂直的四边形是菱形
C. 平行四边形的对角线平分一组对角
D. 矩形的对角线相等且互相平分
2.若矩形对角线相交所成钝角为120°,短边长3.6,则对角线的长为( ).
A. 3.6 B. 7.2 C. 1.8 D. 14.4
3.矩形邻边之比3∶4,对角线长为10,则周长为( ).
A.14 B.28 C.20 D.22
4.(2019?海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为( )
/
A.30° B.45° C.60° D.75°
5. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )
A.测量对角线是否相互平分 B.测量两组对边是否分别相等
C.测量一组对角是否都为直角 D.测量其中三角形是否都为直角
6. 如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )
A. B. C.4 D.
/
二.填空题
7.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10,则AB=______,BC=______.
8.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.
9. (2019?巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 度.
/
10.(2018?重庆模拟)如图,在矩形ABCD中,E为BC的中点,且∠AED=90°,AD=10,则AB的长为 .
/
11.如图,ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为_______.
/
12. 如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是______.
/
三.解答题
13.如图,矩形ABCD的对角线相交于点O,OF⊥BC,CE⊥BD,OE∶BE=1∶3,OF=4,
求∠ADB的度数和BD的长.
/
14.如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.
/
15.(2018?通州区一模)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形ECGD是矩形.
/
【答案与解析】
一.选择题
1.【答案】D;
【解析】∵对角线相等的平行四边形是矩形,∴A不正确;
∵对角线互相垂直的四边形不一定是菱形,∴B不正确;
∵平行四边形的对角线互相平分,菱形的对角线平分一组对角,∴C不正确;
∵矩形的对角线互相平分且相等,∴D正确;
2.【答案】B;
【解析】直角三角形中,30°所对的边等于斜边的一半.
3.【答案】B;
【解析】由勾股定理,可算得邻边长为6和8,则周长为28.
4.【答案】C.
【解析】过点D作DE∥a,
∵四边形ABCD是矩形,
∴∠BAD=∠ADC=90°,
∴∠3=90°﹣∠1=90°﹣60°=30°,
∵a∥b,
∴DE∥a∥b,
∴∠4=∠3=30°,∠2=∠5,
∴∠2=90°﹣30°=60°.
故选C.
/
5.【答案】D;
6.【答案】A;
【解析】先证△ADF≌△BEF,则DF为△ABC中位线,再证明四边形BCDE是矩形,BE=,可求面积.
二.填空题
7.【答案】5,5;
【解析】可证△AOB为等边三角形,AB=AO=CO=BO.
8.【答案】;
【解析】由勾股定理算得斜边AB=,CD=AB=.
9.【答案】15.
【解析】连接AC,
/
∵四边形ABCD是矩形,
∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=30°,即∠E=15°,
故答案为:15.
10.【答案】5;
【解析】∵矩形ABCD中,E是BC的中点,
∴AB=CD,BE=CE,∠B=∠C=90°,
可证得△ABE≌△DCE(SAS),
∴AE=DE,
∵∠AED=90°,∴∠DAE=45°,
∴∠BAE=90°﹣∠DAE=45°,
∴∠BEA=∠BAE=45°,
∴AB=BE=/AD=/×10=5.
11.【答案】3;
【解析】根据平行四边形的性质求出AD=BC,DC=AB,证△ADC≌△CBA,推出△ABC的面积是3,求出AC×AE=6,即可求出阴影部分的面积.
12.【答案】12;
【解析】推出四边形FCGE是矩形,得出FC=EG,FE=CG,EF∥CG,EG∥CA,求出∠BEG=∠B,推出EG=BG,同理AF=EF,求出矩形CFEG的周长是CF+EF+EG+CG=AC+BC,代入求出即可.
三.解答题
13.【解析】
解:由矩形的性质可知OD=OC.
又由OE∶BE=1∶3可知E是OD的中点.
又因为CE⊥OD,根据三线合一可知OC=CD,即OC=CD=OD,
即△OCD是等边三角形,故∠CDB=60°.
所以∠ADB=30°.
又因为CD=2OF=8,
即BD=2OD=2CD=16.
14.【解析】
证明:∵四边形ABCD是矩形,
∴AD∥BC,DC=AB.
∴∠DAE=∠AFB.
∵DE=DC,∴DE=AB.
∵DE⊥AG,∴∠DEA=∠ABF=90°.
∴△ABF≌△DEA.
15.【解析】
证明:∵CF=BC,
∴C点是BF中点,
∵点G是DF中点,
∴CG是△DBF中位线,
∴CG∥BD,CG=/,
∵四边形ABCD是菱形,
∴AC⊥BD,DE=/,
∴∠DEC=90°,CG=DE,
∵CG∥BD,
∴四边形ECGD是矩形.