课题
2.2.2间接证明--反证法
课型
新授课
教学
目标
知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
重点
难点
教学重点:了解反证法的思考过程、特点。
教学难点:反证法的思考过程、特点。
教具
准备
多媒体
课时
安排
1
教学过程与教学内容
教学方法、教学手段与学法、学情
教学过程:
(1)、反证法????反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。????
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大 (小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
(2)、例子
例1、求证:不是有理数
例2、已知,求证:(且)
例3、设,求证
证明:假设,则有,从而
因为,所以,这与题设条件矛盾,所以,原不等式成立。
例4、设二次函数,求证:中至少有一个不小于.
证明:假设都小于,则
(1)
另一方面,由绝对值不等式的性质,有
(2)
(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。
注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。
议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?
例5、设0 < a, b, c < 1,求证:(1 ? a)b, (1 ? b)c, (1 ? c)a,不可能同时大于。
证:设(1 ? a)b >, (1 ? b)c >, (1 ? c)a >,
则三式相乘:ab < (1 ? a)b?(1 ? b)c?(1 ? c)a < ①
又∵0 < a, b, c < 1
∴
同理:,
以上三式相乘: (1 ? a)a?(1 ? b)b?(1 ? c)c≤ 与①矛盾
∴原式成立
例6、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,
求证:a, b, c > 0
证:设a < 0, ∵abc > 0, ∴bc < 0
又由a + b + c > 0, 则b + c = ?a > 0
∴ab + bc + ca = a(b + c) + bc < 0 与题设矛盾
又:若a = 0,则与abc > 0矛盾, ∴必有a > 0
同理可证:b > 0, c > 0
巩固练习:第91页练习1,2
课后作业:第91页 4
利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。
板
书
教学
反思