(新教材)人教A版数学必修第一册(课件3份+教案+练习)4.4 对数函数

文档属性

名称 (新教材)人教A版数学必修第一册(课件3份+教案+练习)4.4 对数函数
格式 zip
文件大小 10.9MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2019-09-26 22:19:02

文档简介

4.4 对数函数
第1课时 对数函数的概念、图象及性质
学 习 目 标
核 心 素 养
1.理解对数函数的概念,会求对数函数的定义域.(重点、难点)
2.能画出具体对数函数的图象,并能根据对数函数的图象说明对数函数的性质.(重点)
1.通过学习对数函数的图象,培养直观想象素养.
2.借助对数函数的定义域的求解,培养数学运算的素养.
1.对数函数的概念
函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
思考1:函数y=2log3x,y=log3(2x)是对数函数吗?
提示:不是,其不符合对数函数的形式.
2.对数函数的图象及性质
a的范围
0a>1
图象
定义域
(0,+∞)
值域
R
性质
定点
(1,0),即x=1时,y=0
单调性
在(0,+∞)上是减函数
在(0,+∞)上是增函数
思考2:对数函数的“上升”或“下降”与谁有关?
提示:底数a与1的关系决定了对数函数的升降.
当a>1时,对数函数的图象“上升”;当03.反函数
指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0且a≠1)互为反函数.
1.函数y=logax的图象如图所示,则实数a的可能取值为(  )
A.5  B.  C.  D.
A [由图可知,a>1,故选A.]
2.若对数函数过点(4,2),则其解析式为________.
f(x)=log2x [设对数函数的解析式为f(x)=logax(a>0且a≠1).由f(4)=2得loga4=2,∴a=2,即f(x)=log2x.]
3.函数f(x)=log2(x+1)的定义域为________.
(-1,+∞) [由x+1>0得x>-1,故f(x)的定义域为(-1,+∞).]
对数函数的概念及应用
【例1】 (1)下列给出的函数:①y=log5x+1;
②y=logax2(a>0,且a≠1);③y=log(-1)x;
④y=log3x;⑤y=logx(x>0,且x≠1);
⑥y=logx.其中是对数函数的为(  )
A.③④⑤     B.②④⑥
C.①③⑤⑥ D.③⑥
(2)若函数y=log(2a-1)x+(a2-5a+4)是对数函数,则a=________.
(3)已知对数函数的图象过点(16,4),则f=__________.
(1)D (2)4 (3)-1 [(1)由对数函数定义知,③⑥是对数函数,故选D.
(2)因为函数y=log(2a-1)x+(a2-5a+4)是对数函数,
所以
解得a=4.
(3)设对数函数为f(x)=logax(a>0且a≠1),
由f(16)=4可知loga16=4,∴a=2,
∴f(x)=log2x,
∴f=log2=-1.]
判断一个函数是对数函数的方法
1.若函数f(x)=(a2+a-5)logax是对数函数,则a=________.
2 [由a2+a-5=1得a=-3或a=2.
又a>0且a≠1,所以a=2.]
对数函数的定义域
【例2】 求下列函数的定义域:
(1)f(x)=;
(2)f(x)=+ln(x+1);
(3)f(x)=log(2x-1)(-4x+8).
[解] (1)要使函数f(x)有意义,则logx+1>0,即logx>-1,解得0(2)函数式若有意义,需满足即解得-1(3)由题意得解得故函数y=log(2x-1)(-4x+8)的定义域为.
求对数型函数的定义域时应遵循的原则
?1?分母不能为0.
?2?根指数为偶数时,被开方数非负.
?3?对数的真数大于0,底数大于0且不为1.
提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.
2.求下列函数的定义域:
(1)f(x)=lg(x-2)+;
(2)f(x)=log(x+1)(16-4x).
[解] (1)要使函数有意义,需满足
解得x>2且x≠3,
所以函数定义域为(2,3)∪(3,+∞).
(2)要使函数有意义,需满足
解得-1所以函数定义域为(-1,0)∪(0,4).
对数函数的图象问题
[探究问题]
1.如图,曲线C1,C2,C3,C4分别对应y=loga1x,y=loga2x,y=loga3x,y=loga4x的图象,你能指出a1,a2,a3,a4以及1的大小关系吗?
提示:作直线y=1,它与各曲线C1,C2,C3,C4的交点的横坐标就是各对数的底数,由此可判断出各底数的大小必有a4>a3>1>a2>a1>0.
2.函数y=ax与y=logax(a>0且a≠1)的图象有何特点?
提示:两函数的图象关于直线y=x对称.
【例3】 (1)当a>1时,在同一坐标系中,函数y=a-x与y=logax的图象为(  )
A    B   C  D
(2)已知f(x)=loga|x|,满足f(-5)=1,试画出函数f(x)的图象.
[思路点拨] (1)结合a>1时y=a-x=x及y=logax的图象求解.
(2)由f(-5)=1求得a,然后借助函数的奇偶性作图.
(1)C [∵a>1,∴0<<1,∴y=a-x是减函数,y=logax是增函数,故选C.]
(2)[解] ∵f(x)=loga|x|,∴f(-5)=loga5=1,即a=5,
∴f(x)=log5|x|,
∴f(x)是偶函数,其图象如图所示.
1.把本例(1)的条件“a>1”去掉,函数“y=logax”改为“y=loga(-x)”,则函数y=a-x与y=loga(-x)的图象可能是(  )
C [∵在y=loga(-x)中,-x>0,∴x<0,
∴图象只能在y轴的左侧,故排除A,D;
当a>1时,y=loga(-x)是减函数,
y=a-x=x是减函数,故排除B;
当0<a<1时,y=loga(-x)是增函数,
y=a-x=x是增函数,∴C满足条件,故选C.]
2.把本例(2)改为f(x)=+2,试作出其图象.
[解] 第一步:作y=log2x的图象,如图(1)所示.
(1)     (2) 
第二步:将y=log2x的图象沿x轴向左平移1个单位长度,得y=log2(x+1)的图象,如图(2)所示.
第三步:将y=log2(x+1)的图象在x轴下方的部分作关于x轴的对称变换,得y=|log2(x+1)|的图象,如图(3)所示.
第四步:将y=|log2(x+1)|的图象沿y轴向上平移2个单位长度,即得到所求的函数图象,如图(4)所示.
(3)     (4) 
函数图象的变换规律
?1?一般地,函数y=f?x±a?+b?a,b为实数?的图象是由函数y=f?x?的图象沿x轴向左或向右平移|a|个单位长度,再沿y轴向上或向下平移|b|个单位长度得到的.
?2?含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y=f?|x-a|?的图象是关于直线x=a对称的轴对称图形;函数y=|f?x?|的图象与y=f?x?的图象在f?x?≥0的部分相同,在f?x?<0的部分关于x轴对称.
1.判断一个函数是不是对数函数关键是分析所给函数是否具有y=logax(a>0且a≠1)这种形式.
2.在对数函数y=logax中,底数a对其图象直接产生影响,学会以分类的观点认识和掌握对数函数的图象和性质.
3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.
1.思考辨析
(1)对数函数的定义域为R.(  )
(2)函数y=loga(x+2)恒过定点(-1,0).(  )
(3)对数函数的图象一定在y轴右侧.(  )
(4)函数y=log2x与y=x2互为反函数.(  )
[答案] (1)× (2)√ (3)√ (4)×
2.下列函数是对数函数的是(  )
A.y=2+log3x
B.y=loga(2a)(a>0,且a≠1)
C.y=logax2(a>0,且a≠1)
D.y=ln x
D [结合对数函数的形式y=logax(a>0且a≠1)可知D正确.]
3.函数f(x)=+lg(5-3x)的定义域是(  )
A.    B.
C. D.
C [由得
即1≤x<.]
4.已知f(x)=log3x.
(1)作出这个函数的图象;
(2)若f(a)[解] (1)作出函数y=log3x的图象如图所示.
(2)令f(x)=f(2),
即log3x=log32,解得x=2.
由图象知:
当0所以所求a的取值范围为0课件38张PPT。第四章 指数函数与对数函数4.4 对数函数
第1课时 对数函数的概念、图象及性质点击右图进入…Thank you for watching !第2课时 对数函数及其性质的应用
学 习 目 标
核 心 素 养
1.掌握对数函数的单调性,会进行同底对数和不同底对数大小的比较.(重点)
2.通过指数函数、对数函数的学习,加深理解分类讨论、数形结合这两种重要数学思想的意义和作用.(重点)
1.通过学习对数函数的单调性的应用,培养逻辑推理素养.
2.借助对数函数性质的综合应用的学习,提升逻辑推理及数学运算素养.
比较对数值的大小
【例1】 比较下列各组值的大小:
(1)log5与log5;
(2)log2与log2;
(3)log23与log54.
[解] (1)法一(单调性法):对数函数y=log5x在(0,+∞)上是增函数,而<,所以log5法二(中间值法):因为log5<0,log5>0,
所以log5(2)法一(单调性法):由于log2=,log2=,
又因对数函数y=log2x在(0,+∞)上是增函数,
且>,所以0>log2>log2,
所以<,所以log2法二(图象法):如图,在同一坐标系中分别画出y=logx及y=logx的图象,由图易知:log2(3)取中间值1,
因为log23>log22=1=log55>log54,
所以log23>log54.
比较对数值大小的常用方法
?1?同底数的利用对数函数的单调性.
?2?同真数的利用对数函数的图象或用换底公式转化.
?3?底数和真数都不同,找中间量.
提醒:比较数的大小时先利用性质比较出与零或1的大小.
1.比较下列各组值的大小:
(1)log0.5,log0.6;
(2)log1.51.6,log1.51.4;
(3)log0.57,log0.67;
(4)log3π,log20.8.
[解] (1)因为函数y=logx是减函数,且0.5<0.6,所以log0.5>log0.6.
(2)因为函数y=log1.5x是增函数,且1.6>1.4,所以log1.51.6>log1.51.4.
(3)因为0>log70.6>log70.5,
所以<,即log0.67(4)因为log3π>log31=0,log20.8log20.8.
解对数不等式
【例2】 已知函数f(x)=loga(x-1),g(x)=loga(6-2x)(a>0,且a≠1).
(1)求函数φ(x)=f(x)+g(x)的定义域;
(2)试确定不等式f(x)≤g(x)中x的取值范围.
[思路点拨] (1)直接由对数式的真数大于0联立不等式组求解x的取值集合.
(2)分a>1和0<a<1求解不等式得答案.
[解] (1)由解得1<x<3,∴函数φ(x)的定义域为{x|1<x<3}.
(2)不等式f(x)≤g(x),即为loga(x-1)≤loga(6-2x),
①当a>1时,不等式等价于
解得1②当0<a<1时,不等式等价于
解得≤x<3.
综上可得,当a>1时,不等式的解集为;
当0<a<1时,不等式的解集为.
常见的对数不等式的三种类型
?1?形如logax>logab的不等式,借助y=logax的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论;
?2?形如logax>b的不等式,应将b化为以a为底数的对数式的形式,再借助y=logax的单调性求解;
?3?形如logax>logbx的不等式,可利用图象求解.
2.(1)已知loga>1,求a的取值范围;
(2)已知log0.7(2x)[解] (1)由loga>1得loga>logaa.
①当a>1时,有a<,此时无解.
②当0所以a的取值范围是.
(2)因为函数y=log0.7x在(0,+∞)上为减函数,
所以由log0.7(2x)1.
即x的取值范围是(1,+∞).
对数函数性质的综合应用
[探究问题]
1.类比y=af(x)单调性的判断法,你能分析一下y=log(2x-1)的单调性吗?
提示:形如y=af(x)的单调性满足“同增异减”的原则,由于y=log(2x-1)由函数y=logt及t=2x-1复合而成,且定义域为2x-1>0,即x>,结合“同增异减”可知,
y=log(2x-1)的减区间为.
2.如何求形如y=logaf(x)的值域?
提示:先求y=f(x)的值域,注意f(x)>0,在此基础上,分a>1和0【例3】 (1)已知y=loga(2-ax)是[0,1]上的减函数,则a的取值范围为(  )
A.(0,1)     B.(1,2)
C.(0,2) D.[2,+∞)
(2)函数f(x)=log(x2+2x+3)的值域是________.
[思路点拨] (1)结合对数函数及y=2-ax的单调性,构造关于a的不等式组,解不等式组可得.
(2)先求真数的范围,再根据对数函数的单调性求解.
(1)B (2)(-∞,-1] [(1)∵f(x)=loga(2-ax)在[0,1]上是减函数,且y=2-ax在[0,1]上是减函数,
∴
即∴∴1<a<2.
(2)f(x)=log(x2+2x+3)=log[(x+1)2+2],
因为(x+1)2+2≥2,
所以log[(x+1)2+2]≤log2=-1,所以函数f(x)的值域是(-∞,-1].]
1.求本例(2)的函数f(x)在[-3,1]上的值域.
[解] ∵x∈[-3,1],
∴2≤x2+2x+3≤6,
∴log6≤log(x2+2x+3)≤log2,
即-log26≤f(x)≤-1,
∴f(x)的值域为[-log26,-1].
2.求本例(2)的单调区间.
[解] ∵x2+2x+3=(x+1)2+2>0,
又y=logt在(0,+∞)为减函数,
且t=x2+2x+3在(-∞,-1)上为减函数,在[-1,+∞)上为增函数,故由复合函数单调性可知,y=log(x2+2x+3)单调递增区间为(-∞,-1),单调递减区间为[-1,+∞).
1.已知对数型函数的单调性求参数的取值范围,要结合复合函数的单调性规律,注意函数的定义域求解;若是分段函数,则需注意两段函数最值的大小关系.
2.求对数型函数的值域一般是先求真数的范围,然后利用对数函数的单调性求解.
1.比较两个对数值的大小及解对数不等式问题,其依据是对数函数的单调性,若对数的底数是字母且范围不明确,一般要分a>1和02.解决与对数函数相关的问题时要树立“定义域优先”的原则,同时注意数形结合思想和分类讨论思想在解决问题中的应用.
1.思考辨析
(1)y=log2x2在[0,+∞)上为增函数.(  )
(2)y=logx2在(0,+∞)上为增函数.(  )
(3)ln x<1的解集为(-∞,e).(  )
(4)函数y=log(x2+1)的值域为[0,+∞).(  )
[答案] (1)× (2)× (3)× (4)×
2.设a=log32,b=log52,c=log23,则(  )
A.a>c>b     B.b>c>a
C.c>b>a D.c>a>b
D [a=log32log22=1,由对数函数的性质可知log523.函数f(x)=log2(1+2x)的单调增区间是______.
 [易知函数f(x)的定义域为-,+∞,又因为函数y=log2x和y=1+2x都是增函数,所以f(x)的单调增区间是.]
4.已知a>0且满足不等式22a+1>25a-2.
(1)求实数a的取值范围;
(2)求不等式loga(3x+1)(3)若函数y=loga(2x-1)在区间[1,3]上有最小值为-2,求实数a的值.
[解] (1)∵22a+1>25a-2,∴2a+1>5a-2,即3a<3,∴a<1,即0<a<1.∴实数a的取值范围是(0,1).
(2)由(1)得,0<a<1,∵loga(3x+1)∴
即解得即不等式的解集为.
(3)∵0<a<1,∴函数y=loga(2x-1)在区间[1,3]上为减函数,∴当x=3时,y有最小值为-2,即loga5=-2,∴a-2==5,解得a=.
课件33张PPT。第四章 指数函数与对数函数4.4 对数函数
第2课时 对数函数及其性质的应用点击右图进入…Thank you for watching !第3课时 不同函数增长的差异
学 习 目 标
核 心 素 养
1.理解直线上升、指数爆炸、对数增长的含义.(重点)
2.区分指数函数、对数函数以及一次函数增长速度的差异.(易混点)
3.会选择适当的函数模型分析和解决一些实际问题.(难点)
借助三个函数模型的增长特征培养数学运算、数学建模的素养.
三种函数模型的性质
y=ax(a>1)
y=logax(a>1)
y=kx(k>0)
在(0,+∞)上的增减性
增函数
增函数
增函数
图象的变化趋势
随x增大逐渐近似与y轴平行
随x增大逐渐近似与x轴平行
保持固定增长速度
增长速度
①y=ax(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=logax(a>1)的增长速度越来越慢;
②存在一个x0,当x>x0时,有ax>kx>logax
1.已知变量y=1+2x,当x减少1个单位时,y的变化情况是(  )
A.y减少1个单位
B.y增加1个单位
C.y减少2个单位
D.y增加2个单位
C [结合函数y=1+2x的变化特征可知C正确.]
2.下列函数中随x的增大而增大且速度最快的是(  )
A.y=ex     B.y=ln x
C.y=2x D.y=e-x
A [结合指数函数、对数函数及一次函数的图象变化趋势可知A正确.]
3.某工厂8年来某种产品总产量C与时间t(年)的函数关系如图所示.
以下四种说法:
①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.
其中说法正确的序号是________.
②③ [结合图象可知②③正确,故填②③.]
几类函数模型的增长差异
【例1】 (1)下列函数中,增长速度最快的是(  )
A.y=2 019x    B.y=2019
C.y=log2 019x D.y=2 019x
(2)下面对函数f(x)=logx,g(x)=x与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是(  )
A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢
B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快
C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变
D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快
(1)A (2)C [(1)指数函数y=ax,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.
(2)观察函数f(x)=logx,g(x)=x与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:
函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.]
常见的函数模型及增长特点
?1?线性函数模型
线性函数模型y=kx+b?k>0?的增长特点是直线上升,其增长速度不变.
?2?指数函数模型
指数函数模型y=ax?a>1?的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.
?3?对数函数模型
对数函数模型y=logax?a>1?的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.
1.四个变量y1,y2,y3,y4随变量x变化的数据如表:
x
1
5
10
15
20
25
30
y1
2
26
101
226
401
626
901
y2
2
32
1 024
37 768
1.05×106
3.36×107
1.07×109
y3
2
10
20
30
40
50
60
y4
2
4.322
5.322
5.907
6.322
6.644
6.907
关于x呈指数函数变化的变量是________.
y2 [以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.]
指数函数、对数函数与一次函数模型的比较
【例2】 函数f(x)=2x和g(x)=2x的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.
(1)请指出图中曲线C1,C2分别对应的函数;
(2)结合函数图象,判断f与g,f(2 019)与g(2 019)的大小.
[解] (1)C1对应的函数为g(x)=2x,C2对应的函数为f(x)=2x.
(2)∵f(1)=g(1),f(2)=g(2)
从图象上可以看出,当1<x<2时,f(x)<g(x),
∴f<g;
当x>2时,f(x)>g(x),
∴f(2 019)>g(2 019).
由图象判断指数函数、一次函数的方法
根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.
2.函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.
(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;
(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).
[解] (1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.
(2)当xf(x);当x1g(x);当x>x2时,g(x)>f(x);当x=x1或x=x2时,f(x)=g(x).
直线上升、指数爆炸、对数增长
对于直线y=kx+b(k≥0)、指数函数y=ax(a>1)、对数函数y=logbx(b>1),当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快,并且直线上升,其增长量固定不变.
1.思考辨析
(1)函数y=2x比y=2x增长的速度更快些.(  )
(2)当a>1,n>0时,在区间(0,+∞)上,对任意的x,总有logax(3)函数y=logx衰减的速度越来越慢.(  )
[答案] (1)× (2)× (3)√
2.下列函数中,随x的增大,增长速度最快的是(  )
A.y=1   B.y=x
C.y=3x D.y=log3x
C [结合函数y=1,y=x,y=3x及y=log3x的图象可知(图略),随着x的增大,增长速度最快的是y=3x.]
3.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x+100,丙:y=1.005x,则投资500元,1 000元,1 500元时,应分别选择________方案.
乙、甲、丙 [将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.]
4.画出函数f(x)=与函数g(x)=x2-2的图象,并比较两者在[0,+∞)上的大小关系.
[解] 函数f(x)与g(x)的图象如图所示.
根据图象易得:当0≤x<4时,f(x)>g(x);
当x=4时,f(x)=g(x);
当x>4时,f(x)课件28张PPT。第四章 指数函数与对数函数4.4 对数函数
第3课时 不同函数增长的差异点击右图进入…Thank you for watching !课时分层作业(二十九) 对数函数的概念、图象及性质
(建议用时:60分钟)
[合格基础练]
一、选择题
1.函数y=的定义域为(  )
A.(-∞,2)    B.(2,+∞)
C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)
C [要使函数有意义,则解得x>2且x≠3,故选C.]
2.若函数y=f(x)是函数y=3x的反函数,则f的值为(  )
A.-log23 B.-log32
C. D.
B [由题意可知f(x)=log3x,
所以f=log3=-log32,
故选B.]
3.如图,若C1,C2分别为函数y=logax和y=logbx的图象,则(  )
A.0B.0C.a>b>1
D.b>a>1
B [作直线y=1,则直线与C1,C2的交点的横坐标分别为a,b,易知04.函数y=log2x的定义域是[1,64),则值域是(  )
A.R B.[0,+∞)
C.[0,6) D.[0,64)
C [由函数y=log2x的图象可知y=log2x在(0,+∞)上是增函数,因此,当x∈[1,64)时,y∈[0,6).]
5.函数f(x)=loga(x+2)(0A.第一象限 B.第二象限
C.第三象限 D.第四象限
A [∵f(x)=loga(x+2)(0<a<1),∴其图象如下图所示,故选A.
]
二、填空题
6.(2018·全国卷Ⅰ)已知函数f(x)=log2(x2+a).若f(3)=1,则a=________.
-7 [由f(3)=1得log2(32+a)=1,所以9+a=2,解得a=-7.]
7.已知函数y=loga(x-3)-1的图象恒过定点P,则点P的坐标是________.
(4,-1) [y=logax的图象恒过点(1,0),令x-3=1,得x=4,则y=-1.]
8.已知对数函数f(x)的图象过点(8,-3),则f(2)=________.
- [设f(x)=logax(a>0,且a≠1),
则-3=loga8,∴a=,
∴f(x)=logx,f(2)=log(2)=-log2(2)=-.]
三、解答题
9.若函数y=loga(x+a)(a>0且a≠1)的图象过点(-1,0).
(1)求a的值;
(2)求函数的定义域.
[解] (1)将(-1,0)代入y=loga(x+a)(a>0,a≠1)中,有0=loga(-1+a),则-1+a=1,所以a=2.
(2)由(1)知y=log2(x+2),由x+2>0,解得x>-2,
所以函数的定义域为{x|x>-2}.
10.若函数f(x)为定义在R上的奇函数,且x∈(0,+∞)时,f(x)=lg(x+1),求f(x)的表达式,并画出大致图象.
[解] ∵f(x)为R上的奇函数,∴f(0)=0.
又当x∈(-∞,0)时,-x∈(0,+∞),
∴f(-x)=lg(1-x).
又f(-x)=-f(x),∴f(x)=-lg(1-x),
∴f(x)的解析式为f(x)=
∴f(x)的大致图象如图所示.
[等级过关练]
1.函数y=ln(1-x)的定义域为(  )
A.(0,1)     B.[0,1)
C.(0,1] D.[0,1]
B [由得0≤x<1,故选B.]
2.已知lg a+lg b=0,则函数f(x)=ax与函数g(x)=-logbx的图象可能是(  )
A   B     C   D
B [由lg a+lg b=0,得lg(ab)=0,所以ab=1,故a=,所以当0<b<1时,a>1;当b>1时,0<a<1.
又因为函数y=-logbx与函数y=logbx的图象关于x轴对称.利用这些信息可知选项B符合0<b<1且a>1的情况.]
3.已知函数f(x)=若f(a)=,则a=________.
-1或 [当x>0时,f(x)=log2x,
由f(a)=得log2a=,即a=.
当x≤0时,f(x)=2x,由f(a)=得2a=,a=-1.
综上a=-1或.]
4.设函数f(x)=logax(a>0,且a≠1),若f(x1x2…x2 019)=8,则f(x)+f(x)+…+f(x)的值等于________.
16 [∵f(x)+f(x)+f(x)+…+f(x)
=logax+logax+logax+…+logax
=loga(x1x2x3…x2 019)2
=2loga(x1x2x3…x2 019)=2×8=16.]
5.若不等式x2-logmx<0在内恒成立,求实数m的取值范围.
[解] 由x2-logmx<0,得x2要使x2∵x=时,y=x2=,∴只要x=时,y=logm≥=logmm,∴≤m,即≤m.
又0即实数m的取值范围是.
课时分层作业(三十) 对数函数及其性质的应用
(建议用时:60分钟)
[合格基础练]
一、选择题
1.若lg(2x-4)≤1,则x的取值范围是(  )
A.(-∞,7]    B.(2,7]
C.[7,+∞) D.(2,+∞)
B [由lg(2x-4)≤1,得0<2x-4≤10,
即22.函数f(x)=|logx|的单调递增区间是(  )
A. B.(0,1]
C.(0,+∞) D.[1,+∞)
D [f(x)的图象如图所示,由图象可知单调递增区间为[1,+∞).
]
3.已知loga>logb>0,则下列关系正确的是(  )
A.0C.1A [由loga>0,logb>0,可知a,b∈(0,1),
又loga>logb,作出图象如图所示,
结合图象易知a>b,∴0]
4.若a=20.2,b=log4(3.2),c=log2(0.5),则(  )
A.a>b>c B.b>a>c
C.c>a>b D.b>c>a
A [∵a=20.2>1>b=log4(3.2)>0>c=log2(0.5),∴a>b>c.故选A.]
5.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为(  )
A.   B.   C.2   D.4
B [当a>1时,a+loga2+1=a,loga2=-1,a=(舍去).
当0∴loga2=-1,a=.]
二、填空题
6.函数y=log0.4(-x2+3x+4)的值域是________.
[-2,+∞) [-x2+3x+4=-2+≤,
∴有0<-x2+3x+4≤,
∴根据对数函数y=log0.4x的图象(图略)即可得到:
log0.4(-x2+3x+4)≥log0.4=-2,
∴原函数的值域为[-2,+∞).]
7.若loga<1,则a的取值范围是________.
∪(1,+∞) [原不等式等价于或
解得01,
故a的取值范围为∪(1,+∞).]
8.若y=loga(ax+3)(a>0且a≠1)在区间(-1,+∞)上是增函数,则a的取值范围是________.
(1,3] [因为y=loga(ax+3)(a>0且a≠1)在区间(-1,+∞)上是增函数,
所以
解得1三、解答题
9.已知函数f(x)=ln(3+x)+ln(3-x).
(1)求函数y=f(x)的定义域;
(2)判断函数y=f(x)的奇偶性.
[解] (1)要使函数有意义,则解得-3<x<3,故函数y=f(x)的定义域为(-3,3).
(2)由(1)可知,函数y=f(x)的定义域为(-3,3),关于原点对称.
对任意x∈(-3,3),则-x∈(-3,3).
∵f(-x)=ln(3-x)+ln(3+x)=f(x),
∴由函数奇偶性可知,函数y=f(x)为偶函数.
10.已知函数y=(log2x-2),2≤x≤8.
(1)令t=log2x,求y关于t的函数关系式,并写出t的范围;
(2)求该函数的值域.
[解] (1)y=(t-2)(t-1)=t2-t+1,
又2≤x≤8,∴1=log22≤log2x≤log28=3,即1≤t≤3.
(2)由(1)得y=2-,1≤t≤3,
当t=时,ymin=-;
当t=3时,ymax=1,∴-≤y≤1,
即函数的值域为.
[等级过关练]
1.函数f(x)=lg是(  )
A.奇函数     B.偶函数
C.既奇又偶函数 D.非奇非偶函数
A [f(x)定义域为R,f(-x)+f(x)=lg+lg=lg=lg 1=0,
∴f(x)为奇函数,故选A.]
2.当0<x≤时,4x<logax,则a的取值范围是(  )
A.(,2) B.(1,)
C. D.
C [当0<x≤时,函数y=4x的图象如图所示,若不等式4x<logax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示),∵y=logax的图象与y=4x的图象交于点时,a=,故虚线所示的y=logax的图象对应的底数a应满足<a<1,故选C.
]
3.函数f(x)=log2·log(2x)的最小值为________.
- [f(x)=log2·log(2x)=log2x·2log2(2x)=log2x(1+log2x).设t=log2x(t∈R),则原函数可以化为y=t(t+1)=2-(t∈R),故该函数的最小值为-.故f(x)的最小值为-.]
4.设常数a>1,实数x,y满足logax+2logxa+logxy=-3,若y的最大值为,则x的值为________.
 [实数x,y满足logax+2logxa+logxy=-3,
化为logax++=-3.
令logax=t,则原式化为logay=-2+.
∵a>1,∴当t=-时,y取得最大值,
∴loga=,解得a=4,∴log4x=-,
∴x=4-=.]
5.已知函数f(x)=loga(1-x)+loga(x+3),其中0(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为-4,求a的值.
[解] (1)要使函数有意义,则有
解得-3(2)函数可化为f(x)=loga(1-x)(x+3)=loga(-x2-2x+3)=loga[-(x+1)2+4],因为-3因为0即f(x)min=loga4,由loga4=-4,得a-4=4,所以a=4-=.
课时分层作业(三十一) 不同函数增长的差异
(建议用时:60分钟)
[合格基础练]
一、选择题
1.当a>1时,有下列结论:
①指数函数y=ax,当a越大时,其函数值的增长越快;
②指数函数y=ax,当a越小时,其函数值的增长越快;
③对数函数y=logax,当a越大时,其函数值的增长越快;
④对数函数y=logax,当a越小时,其函数值的增长越快.
其中正确的结论是(  )
A.①③      B.①④
C.②③ D.②④
B [结合指数函数及对数函数的图象可知①④正确.故选B.]
2.y1=2x,y2=x2,y3=log2x,当2A.y1>y2>y3 B.y2>y1>y3
C.y1>y3>y2 D.y2>y3>y1
B [在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.]
3.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是(  )
A.y=0.2x B.y=(x2+2x)
C.y= D.y=0.2+log16x
C [用排除法,当x=1时,排除B项;当x=2时,排除D项;当x=3时,排除A项.]
4.在某实验中,测得变量x和变量y之间对应数据,如表.
x
0.50
0.99
2.01
3.98
y
-1.01
0.01
0.98
2.00
则x,y最合适的函数是(  )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2x
D [根据x=0.50,y=-1.01,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=log2x,可知满足题意.故选D.]
5.四人赛跑,假设他们跑过的路程fi(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是(  )
A.f1(x)=x2 B.f2(x)=4x
C.f3(x)=log2x D.f4(x)=2x
D [显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,故选D.]
二、填空题
6.函数y=x2与函数y=xln x在区间(0,+∞)上增长较快的一个是________ .
y=x2 [当x变大时,x比ln x增长要快,
∴x2要比xln x增长的要快.]
7.下列各项是四种生意预期的收益y关于时间x的函数,从足够长远的角度看,更为有前途的生意是________.
①y=10×1.05x;②y=20+x1.5;③y=30+lg(x-1);④y=50.
① [结合三类函数的增长差异可知①的预期收益最大,故填①.]
8.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A对应________;B对应________;C对应________;D对应________.
(4) (1) (3) (2) [A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应.]
三、解答题
9.函数f(x)=1.1x,g(x)=ln x+1,h(x)=x的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点).
[解] 由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)=x,曲线C3对应的函数是g(x)=ln x+1.
由题图知,
当x<1时,f(x)>h(x)>g(x);
当1g(x)>h(x);
当ef(x)>h(x);
当ah(x)>f(x);
当bg(x)>f(x);
当cf(x)>g(x);
当x>d时,f(x)>h(x)>g(x).
10.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=loga(t+1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度.
t(年)
1
2
3
4
5
6
h(米)
0.6
1
1.3
1.5
1.6
1.7
[解] 据表中数据作出散点图如图:
由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.
将(2,1)代入到h=loga(t+1)中,得1=loga3,解得a=3.即h=log3(t+1).
当t=8时,h=log3(8+1)=2,
故可预测第8年松树的高度为2米.
[等级过关练]
1.函数y=2x-x2的图象大致是(  )
A   B     C   D
A [分别画出y=2x,y=x2的图象,由图象可知(图略),有3个交点,∴函数y=2x-x2的图象与x轴有3个交点,故排除B,C;当x<-1时,y<0,故排除D,故选A.]
2.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为(  )
A   B    C   D
D [设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),所以函数y=f(x)的图象大致为D中图象,故选D.]
3.若已知16x>log2x [作出f(x)=x和g(x)=log2x的图象,如图所示:
由图象可知,在(0,4)内,x>log2x;
x=4或x=16时,x=log2x;
在(4,16)内,xlog2x.]
4.已知某工厂生产某种产品的月产量y与月份x满足关系y=a·0.5x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.
1.75 [∵y=a·0.5x+b,且当x=1时,y=1,当x=2时,y=1.5,则有解得
∴y=-2×0.5x+2.
当x=3时,y=-2×0.125+2=1.75(万件).]
5.某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?
[解] 借助工具作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y=0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.