(新教材)人教A版数学必修第一册(课件57+教案+练习)5.6.1 匀速圆周运动的数学模型5.6.2 函数y=Asin(ωx+φ)的图象

文档属性

名称 (新教材)人教A版数学必修第一册(课件57+教案+练习)5.6.1 匀速圆周运动的数学模型5.6.2 函数y=Asin(ωx+φ)的图象
格式 zip
文件大小 3.6MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2019-09-26 22:28:55

文档简介

5.6 函数y=Asin(ωx+φ)
5.6.1 匀速圆周运动的数学模型
5.6.2 函数y=Asin(ωx+φ)的图象
学 习 目 标
核 心 素 养
1.理解参数A,ω,φ对函数y=Asin(ωx+φ)的图象的影响;能够将y=sin x的图象进行变换得到y=Asin(ωx+φ),x∈R的图象.(难点)
2.能根据y=Asin(ωx+φ)的部分图象,确定其解析式.(重点)
3.求函数解析式时φ值的确定.(易错点)
1.通过函数图象的变换,培养直观想象素养.
2.借助函数的图象求解析式,提升数学运算素养.
1.φ对y=sin(x+φ),x∈R的图象的影响
2.ω(ω>0)对y=sin(ωx+φ)的图象的影响
3.A(A>0)对y=Asin(ωx+φ)的图象的影响
1.把函数y=sin x的图象向左平移个单位长度后所得图象的解析式为(  )
A.y=sin x-   B.y=sin x+
C.y=sin D.y=sin
D [根据图象变换的方法,y=sin x的图象向左平移个单位长度后得到y=sin的图象.]
2.为了得到函数y=4sin,x∈R的图象,只需将函数y=4sin,x∈R的图象上的所有点(  )
A.横坐标伸长到原来的2倍,纵坐标不变
B.横坐标缩短到原来的倍,纵坐标不变
C.纵坐标伸长到原来的2倍,横坐标不变
D.纵坐标缩短到原来的倍,横坐标不变
A [函数y=4sin的图象上各点横坐标伸长为原来的2倍,纵坐标不变,得到y=4sin的图象.]
3.函数y=Asin(ωx+φ)+1(A>0,ω>0)的最大值为5,则A=________.
4 [由已知得A+1=5,故A=4.]
三角函数图象之间的变换
【例1】 (1)将函数y=cos的图象向左平移个单位长度,再向下平移3个单位长度,则所得图象的解析式为________.
(2)将y=sin x的图象怎样变换可得到函数y=2sin2x++1的图象?
[思路点拨] (1)依据左加右减;上加下减的规则写出解析式.
(2)法一:y=sin x→纵坐标伸缩→横坐标伸缩和平移→向上平移.
法二:左右平移→横坐标伸缩→纵坐标伸缩→上下平移.
(1)y=-cos 2x-3 [y=cos的图象向左平移个单位长度,
得y=cos=cos(2x+π)=-cos 2x,
再向下平移3个单位长度得y=-cos 2x-3的图象.]
(2)[解] 法一:(先伸缩法)①把y=sin x的图象上所有点的纵坐标伸长到原来的2倍,得到y=2sin x的图象;②将所得图象上所有点的横坐标缩短到原来的倍,得y=2sin 2x的图象;③将所得图象沿x轴向左平移个单位,得y=2sin 2的图象;
④将所得图象沿y轴向上平移1个单位,
得y=2sin+1的图象.
法二:(先平移法)①将y=sin x的图象沿x轴向左平移个单位,得y=sin的图象;②将所得图象上所有点的横坐标缩短到原来的倍,得y=sin的图象;③把所得图象上所有点的纵坐标伸长到原来2倍,得到y=2sin的图象;④将所得图象沿y轴向上平移1个单位,得y=2sin+1的图象.
由y=sin x的图象,通过变换可得到函数y=Asin(ωx+φ)(A>0,ω>0)的图象,其变化途径有两条:
(1)y=sin xy=sin(x+φ)y=sin(ωx+φ)
y=Asin(ωx+φ).
(2)y=sin xy=sin ωxy=sin=sin(ωx+φ)y=Asin(ωx+φ).
提醒:两种途径的变换顺序不同,其中变换的量也有所不同:(1)是先相位变换后周期变换,平移|φ|个单位.(2)是先周期变换后相位变换,平移个单位,这是很易出错的地方,应特别注意.
1.(1)要得到y=cos的图象,只要将y=sin 2x的图象(  )
A.向左平移个单位 B.向右平移个单位
C.向左平移个单位 D.向右平移个单位
(2)把函数y=f(x)的图象上各点向右平移个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的倍,所得图象的解析式是y=2sin,则f(x)的解析式是(  )
A.f(x)=3cos x B.f(x)=3sin x
C.f(x)=3cos x+3 D.f(x)=sin 3x
(1)A (2)A [(1)因为y=cos
=sin=sin
=sin 2,
所以将y=sin 2x的图象向左平移个单位,
得到y=cos的图象.
(2)y=2siny=3sin
y=3sin
y=3sin
=3sin
=3cos x.]
已知函数图象求解析式
【例2】 (1)已知函数f(x)=Acos(ωx+φ)+B的部分图象如图所示,则函数f(x)的解析式为(  )
A.y=2cos+4 B.y=2cos+4
C.y=4cos+2 D.y=4cos+2
(2)函数f(x)=Asin(ωx+φ)中A>0,ω>0,|φ|<,且图象如图所示,求其解析式.
[思路点拨] 由最大(小)值求A和B,由周期求ω,由特殊点坐标解方程求φ.
(1)A [由函数f(x)的最大值和最小值得
A+B=6,-A+B=2,所以A=2,B=4,
函数f(x)的周期为×4=4π,又ω>0,
所以ω=,又因为点在函数f(x)的图象上
所以6=2cos+4,所以cos=1,
所以+φ=2kπ,k∈Z,所以φ=2kπ-,k∈Z,又|φ|<
所以φ=-,所以f(x)=2cos+4.]
(2)[解] 法一:(五点作图原理法)由图象知,振幅A=3,T=-=π,所以ω=2,又由点,根据五点作图原理(可判为“五点法”中的第一点)-×2+φ=0得φ=,
所以f(x)=3sin.
法二:(方程法)由图象知,振幅A=3,T=-=π,所以ω=2,
又图象过点,
所以f=3sin=0,
所以sin=0,-+φ=kπ(k∈Z),又因为|φ|<,所以k=0,φ=,所以f(x)=3sin.
法三:(变换法)由图象知,振幅A=3,T=-=π,所以ω=2,且f(x)=Asin(ωx+φ)是由y=3sin 2x向左平移个单位而得到的,解析式为f(x)=3sin=3sin.
确定函数y=Asin?ωx+φ?的解析式的关键是φ的确定,常用方法有:
?1?代入法:把图象上的一个已知点代入?此时A,ω已知?或代入图象与x轴的交点求解?此时要注意交点在上升区间上还是在下降区间上?.
?2?五点法:确定φ值时,往往以寻找“五点法”中的第一个零点作为突破口.“五点”的ωx+φ的值具体如下:,“第一点”?即图象上升时与x轴的交点?为ωx+φ=0;,“第二点”?即图象的“峰点”?为ωx+φ=;,“第三点”?即图象下降时与x轴的交点?为ωx+φ=π;,“第四点”?即图象的“谷点”?为ωx+φ=;,“第五点”为ωx+φ=2π.
2.已知函数f(x)=Asin(ωx+φ),x∈R的图象与x轴的交点中,相邻两个交点的距离为,且图象上一个最低点为M,求f(x)的解析式.
[解] 由最低点M,得A=2.
在x轴上两相邻交点之间的距离为,故=,即T=π,ω===2.
由点M在图象上得
2sin=-2,即sin=-1,故+φ=2kπ-(k∈Z),
∴φ=2kπ-(k∈Z).又φ∈,
∴φ=.故f(x)=2sin.
三角函数图象与性质的综合应用
[探究问题]
1.如何求函数y=Asin(ωx+φ)与y=Acos(ωx+φ)的对称轴方程?
提示:与正弦曲线、余弦曲线一样,函数y=Asin(ω+φ)和y=Acos(ωx+φ)的图象的对称轴通过函数图象的最值点且垂直于x轴.
函数y=Asin(ωx+φ)对称轴方程的求法:令sin(ωx+φ)=±1,得ωx+φ=kπ+(k∈Z),则x=(k∈Z),所以函数y=Asin(ωx+φ)的图象的对称轴方程为x=(k∈Z);
函数y=Acos(ωx+φ)对称轴方程的求法:令cos(ωx+φ)=±1,得ωx+φ=kπ(k∈Z),则x=(k∈Z),所以函数y=Acos(ωx+φ)的图象的对称轴方程为x=(k∈Z).
2.如何求函数y=Asin(ωx+φ)与y=Acos(ωx+φ)的对称中心?
提示:与正弦曲线、余弦曲线一样,函数y=Asin(ωx+φ)和y=Acos(ωx+φ)图象的对称中心即函数图象与x轴的交点.
函数y=Asin(ωx+φ)对称中心的求法:令sin(ωx+φ)=0,得ωx+φ=kπ(k∈Z),则x=(k∈Z),所以函数y=Asin(ωx+φ)的图象关于点(k∈Z)成中心对称;
函数y=Acos(ωx+φ)对称中心的求法:令cos(ωx+φ)=0,得ωx+φ=kπ+(k∈Z),则x=(k∈Z),所以函数y=Acos(ωx+φ)的图象关于点(k∈Z)成中心对称.
【例3】 (1)已知函数f(x)=sin(ω>0),若f=f,且f(x)在区间上有最小值,无最大值,则ω=(  )
A.    B. C.    D.
(2)已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ<π)是R上的偶函数,其图象关于点M对称,且在区间上是单调函数,求φ和ω的值.
[思路点拨] (1)先由题目条件分析函数f(x)图象的对称性,何时取到最小值,再列方程求ω的值.
(2)先由奇偶性求φ,再由图象的对称性和单调性求ω.
(1)B [因为f=f,所以直线x==是函数f(x)图象的一条对称轴,
又因为f(x)在区间上有最小值,无最大值,
所以当x=时,f(x)取得最小值.
所以ω+=2kπ-,k∈Z,解得ω=8k-,(k∈Z)
又因为T=≥-=,所以ω≤12,又因为ω>0,
所以k=1,即ω=8-=.]
(2)[解] 由f(x)是偶函数,得f(-x)=f(x),即函数f(x)的图象关于y轴对称,
∴f(x)在x=0时取得最值,即sin φ=1或-1.
依题设0≤φ<π,∴解得φ=.
由f(x)的图象关于点M对称,可知
sin=0,即ω+=kπ,解得ω=-,k∈Z.
又f(x)在上是单调函数,
所以T≥π,即≥π.
∴ω≤2,又ω>0,
∴k=1时,ω=;k=2时,ω=2.
故φ=,ω=2或.
1.将本例(2)中“偶”改为“奇”,“其图象关于点M对称,且在区间上是单调函数”改为“在区间上为增函数”,试求ω的最大值.
[解] 因为f(x)是奇函数,所以f(0)=sin φ=0,又0≤φ<π,所以φ=0.
因为f(x)=sin ωx在上是增函数.
所以?,
于是,解得0<ω≤,
所以ω的最大值为.
2.本例(2)中增加条件“ω>1”,求函数y=f2(x)+sin 2x,x∈的最大值.
[解] 由条件知f(x)=sin=cos 2x,
由x∈得2x∈,
sin 2x∈
y=f2(x)+sin 2x=cos22x+sin 2x=1-sin22x+sin 2x=-(sin 2x-)2+
所以当sin 2x=时ymax=.
1.正弦余弦型函数奇偶性的判断方法
正弦型函数y=Asin(ωx+φ)和余弦型函数y=Acos(ωx+φ)不一定具备奇偶性.对于函数y=Asin(ωx+φ),当φ=kπ(k∈Z)时为奇函数,当φ=kπ±(k∈Z)时为偶函数;对于函数y=Acos(ωx+φ),当φ=kπ(k∈Z)时为偶函数,当φ=kπ±(k∈Z)时为奇函数.
2.与正弦、余弦函数有关的单调区间的求解技巧
(1)结合正弦、余弦函数的图象,熟记它们的单调区间.
(2)确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法:采用“换元”法整体代换,将ωx+φ看作一个整体,可令“z=ωx+φ”,即通过求y=Asin z的单调区间而求出函数的单调区间.若ω<0,则可利用诱导公式先将x的系数转变为正数,再求单调区间.
1.准确理解“图象变换法”
(1)由y=sin x到y=sin (x+φ)的图象变换称为相位变换,由y=sin x到y=sin ωx图象的变换称为周期变换;由y=sin x到y=Asin x图象的变换称为振幅变换.
(2)由y=sin x的图象,通过变换可得到函数y=Asin (ωx+φ)的图象,其变换途径有两条,注意两种途径的变换顺序不同,其中变换的量也有所不同:①是先相位变换后周期变换,平移|φ|个单位.②是先周期变换后相位变换,平移个单位,这是很易出错的地方,应特别注意.
(3)类似地y=Acos (ωx+φ)(A>0,ω>0)的图象也可以由y=cos x的图象变换得到.
2.由y=Asin (ωx+φ)的图象性质或部分图象确定解析式的关键在于确定参数A,ω,φ.其基本方法是在观察图象的基础上,利用待定系数法求解.
1.思考辨析
(1)y=sin 3x的图象向左平移个单位所得图象的解析式是y=sin.(  )
(2)y=sin x的图象上所有点的横坐标都变为原来的2倍所得图象的解析式是y=sin 2x.(  )
(3)y=sin x的图象上所有点的纵坐标都变为原来的2倍所得图象的解析式是y=sin x.(  )
[提示] (1)错误.y=sin 3x的图象向左平移个单位得y=sin=sin.
(2)错误.y=sin 2x应改为y=sinx.
(3)错误.y=sin x应改为y=2sin x.
[答案] (1)× (2)× (3)×
2.函数y=cos x图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y=cos ωx,则ω的值为________.
 [函数y=cos xy=cosx.所以ω=.]
3.由y=3sin x的图象变换到y=3sin的图象主要有两个过程:先平移后伸缩和先伸缩后平移,前者需向左平移________个单位,后者需向左平移________个单位.
  [y=3sin xy=3sin
y=3sin,
y=3sin xy=3sin
y=3sin=3sin.]
4.已知函数f(x)=3sin+3(x∈R),用图象变换法画出它在一个周期内的闭区间上的图象.
[解]
课件57张PPT。第五章 三角函数5.6 函数y=Asin(ωx+φ)
5.6.1 匀速圆周运动的数学模型
5.6.2 函数y=Asin(ωx+φ)的图象点击右图进入…Thank you for watching !课时分层作业(五十) 函数y=Asin(x+φ)
(建议用时:60分钟)
[合格基础练]
一、选择题
1.下列表示函数y=sin在区间上的简图正确的是(  )
A [当x=π时,y=sin=-排除B、D.
当x=时y=sin 0=0,排除C,故选A.]
2.把函数y=sin的图象向左平移个单位长度,所得到的图象对应的函数是(  )
A.奇函数
B.偶函数
C.既是奇函数也是偶函数
D.非奇非偶函数
A [y=sin=sin,向左平移个单位长度后为y=sin=sin 2x,为奇函数.]
3.同时具有性质“(1)最小正周期是π;(2)图象关于直线x=对称;(3)在上单调递增”的一个函数是(  )
A.y=sin B.y=cos
C.y=sin D.y=cos
C [由(1)知T=π=,ω=2,排除A.由(2)(3)知x=时,f(x)取最大值,验证知只有C符合要求.]
4.已知函数f(x)=Asin(ωx+φ)+B的一部分图象如图所示,若A>0,ω>0,|φ|<,则(  )
A.B=4 B.φ=
C.ω=1 D.A=4
B [由函数图象可知f(x)min=0,f(x)max=4.
所以A==2,B==2.
由周期T==4知ω=2.
由f=4得2sin+2=4,
sin=1,又|φ|<,故φ=.]
5.已知函数f(x)=cos(ω>0)的相邻两个零点的距离为,要得到y=f(x)的图象,只需把y=cos ωx的图象(  )
A.向右平移个单位 B.向左平移个单位
C.向右平移个单位 D.向左平移个单位
A [由已知得=2×,故ω=2.
y=cos 2x向右平移个单位可得y=cos 2=cos的图象.]
二、填空题
6.要得到函数y=sinx的图象,只需将函数y=sin的图象向右平移________个单位.
 [由于y=sin=sin,故要得到y=sinx的图象,只要将y=sin的图象向右平移个单位.]
7.将函数y=sin的图象向右平移个单位长度,再将图象上各点的横坐标扩大到原来的3倍(纵坐标不变),则所得的函数解析式是________.
y=sin [y=sin3x+
y=sin=sin
y=sin,
故所得的函数解析式是y=sin.]
8.某同学利用描点法画函数y=Asin (ωx+φ)(其中0x
0
1
2
3
4
y
1
0
1
-1
-2
经检查,发现表格中恰有一组数据计算错误,请你根据上述信息推断函数y=Asin (ωx+φ)的解析式应是________.
y=2sin [在平面直角坐标系中描出这五个点,如图所示.
根据函数图象的大致走势,
可知点(1,0)不符合题意;
又因为0所以A=2.
因为函数图象过(0,1),∴2sin φ=1,
又∵-<φ<,∴φ=,
由(0,1),(2,1)关于直线x=1对称,
知x=1时函数取得最大值2,
因此函数的最小正周期为6.
∴ω=.]
三、解答题
9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)如何由函数y=sin x的图象通过相应的平移与伸缩变换得到函数f(x)的图象,写出变换过程.
[解] (1)由图象知A=1.f(x)的最小正周期T=4×=π,故ω==2,
将点代入f(x)的解析式得sin=1,
又|φ|<,∴φ=.故函数f(x)的解析式为f(x)=sin.
(2)变换过程如下:
y=sin x图象上的y=sin 2x的图象,再把y=sin 2x的图象,向左平移个单位y=sin的图象.
10.已知函数f(x)=2cos2ωx-1+2sin ωxcos ωx(0<ω<1),直线x=是函数f(x)的图象的一条对称轴.
(1)求函数f(x)的单调递增区间;
(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到的,若g=,α∈,求sin α的值.
[解] (1)f(x)=cos 2ωx+sin 2ωx=2sin2ωx+,
由于直线x=是函数f(x)=2sin的图象的一条对称轴,
所以ω+=kπ+(k∈Z),
解得ω=k+(k∈Z),
又0<ω<1,所以ω=,
所以f(x)=2sin.
由2kπ-≤x+≤2kπ+(k∈Z),
得2kπ-≤x≤2kπ+(k∈Z),
所以函数f(x)的单调递增区间为2kπ-,2kπ+(k∈Z).
(2)由题意可得g(x)=2sin,
即g(x)=2cos,
由g=2cos=2cos=,得cos=,
又α∈,故<α+<,
所以sin=,
所以sin α=sin
=sin·cos-cos·sin
=×-×=.
[等级过关练]
1.已知a是实数,则函数f(x)=1+asin ax的部分图象不可能是(  )
D [当a=0时,f(x)=1,是选项C,当a≠0时,
函数f(x)=1+asin ax的周期T=,
振幅为|a|,所以当|a|<1时,T>2π.
当|a|>1时T<2π,由此可知A,B有可能出现,D不可能.]
2.函数y=sin 2x的图象向右平移φ个单位长度(φ>0)得到的图象恰好关于x=对称,则φ的最小值是________.
 [函数y=sin 2x的图象向右平移后得到y=sin[2(x-φ)]的图象,而x=是对称轴,即2=kπ+(k∈Z),所以φ=-(k∈Z).又φ>0当k=-1时,φ取得最小值.]
3.函数f(x)=3sin的图象为C,则以下结论中正确的是________.(写出所有正确结论的编号)
①图象C关于直线x=对称;
②图象C关于点对称;
③函数f(x)在区间内是增函数;
④由y=3sin 2x的图象向右平移个单位长度可以得到图象C.
②③ [f=3sin
=3sin=-.
f=3sin=0,
故①错,②正确.
令-+2kπ≤2x-≤+2kπ,k∈Z,
解得-+kπ≤x≤π+kπ,k∈Z,故③正确.
函数y=3sin 2x的图象向右平移个单位长度,得到函数y=3sin 2=3sin的图象,故④错.]
4.函数y=2sin πx-(-2≤x≤4)的所有零点之和为________.
8 [函数y=2sin πx-(-2≤x≤4)的零点即
方程2sin πx=的根,
作函数y=2sin πx与y=的图象如下:由图可知共有8个公共点所以原函数有8个零点.
y=2sin πx-=2sin π(1-x)-,
令t=1-x,则y=2sin πt-,t∈[-3,3],
该函数是奇函数,故零点之和为0.所以原函数的零点之和为8.]
5.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)的一系列对应值如下表:
x

y
-1
1
3
1
-1
1
3
(1)根据表格提供的数据求函数f(x)的一个解析式;
(2)根据(1)的结果,若函数y=f(kx)(k>0)的最小正周期为,当x∈时,方程f(kx)=m恰有两个不同的实数解,求实数m的取值范围.
[解] (1)设f(x)的最小正周期为T,则T=-=2π,由T=,得ω=1,又解得令ω·+φ=,即+φ=,解得φ=-,∴f(x)=2sin+1.(答案不唯一)
(2)∵函数y=f(kx)=2sin+1的最小正周期为,且k>0,∴k=3.令t=3x-,∵x∈,
∴t∈,如图所示,
当sin t=s在上有两个不同的实数解时,s∈,∴当x∈时,由方程f(kx)=m恰有两个不同的实数解得m∈[+1,3),即实数m的取值范围是[+1,3).