(新教材)人教A版数学必修第一册(课件+教案+练习)2.3 二次函数与一元二次方程、不等式

文档属性

名称 (新教材)人教A版数学必修第一册(课件+教案+练习)2.3 二次函数与一元二次方程、不等式
格式 zip
文件大小 7.9MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2019-09-26 22:22:41

文档简介

2.3 二次函数与一元二次方程、不等式
第1课时 一元二次不等式及其解法
学 习 目 标
核 心 素 养
1.掌握一元二次不等式的解法(重点).
2.能根据“三个二次”之间的关系解决简单问题(难点).
通过一元二次不等式的学习,培养数学运算素养.
1.一元二次不等式的概念
只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.
2.一元二次不等式的一般形式
(1)ax2+bx+c>0(a≠0).
(2)ax2+bx+c≥0(a≠0).
(3)ax2+bx+c<0(a≠0).
(4)ax2+bx+c≤0(a≠0).
思考1:不等式x2-y2>0是一元二次不等式吗?
提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.
3.一元二次不等式的解与解集
使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.
思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?
提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.
4.三个“二次”的关系
设y=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac
判别式
Δ>0
Δ=0
Δ<0
解不等式y>0或y<0的步骤
求方程y=0的解
有两个不相等的实数根x1,x2(x1<x2)
有两个相等的实数根x1=x2=-
没有
实数根
画函数y=ax2+bx+c(a>0)的图象
得等的集不式解
y>0
{x|x<x1_或x>x2}

R
y<0
{x|x1<x<x2}
?
?
思考3:若一元二次不等式ax2+x-1>0的解集为R,则实数a应满足什么条件?
提示:结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则解得a∈?,所以不存在a使不等式ax2+x-1>0的解集为R.
1.不等式3+5x-2x2≤0的解集为(  )
A.
B.
C.
D.R
C [3+5x-2x2≤0?2x2-5x-3≥0?(x-3)(2x+1)≥0?x≥3或x≤-.]
2.不等式3x2-2x+1>0的解集为(  )
A.  B.
C.? D.R
D [因为Δ=(-2)2-4×3×1=4-12=-8<0,所以不等式3x2-2x+1>0的解集为R.]
3.不等式x2-2x-5>2x的解集是________.
{x|x>5或x<-1} [由x2-2x-5>2x,得x2-4x-5>0,因为x2-4x-5=0的两根为-1,5,
故x2-4x-5>0的解集为{x|x<-1或x>5}.]
4.不等式-3x2+5x-4>0的解集为________.
? [原不等式变形为3x2-5x+4<0.因为Δ=(-5)2-4×3×4=-23<0,所以3x2-5x+4=0无解.
由函数y=3x2-5x+4的图象可知,3x2-5x+4<0的解集为?.]
一元二次不等式的解法
【例1】 解下列不等式:
(1)2x2+7x+3>0;
(2)-4x2+18x-≥0;
(3)-2x2+3x-2<0.
[解] (1)因为Δ=72-4×2×3=25>0,所以方程2x2+7x+3=0有两个不等实根x1=-3,x2=-.又二次函数y=2x2+7x+3的图象开口向上,所以原不等式的解集为.
(2)原不等式可化为2≤0,所以原不等式的解集为.
(3)原不等式可化为2x2-3x+2>0,因为Δ=9-4×2×2=-7<0,所以方程2x2-3x+2=0无实根,又二次函数y=2x2-3x+2的图象开口向上,所以原不等式的解集为R.
解不含参数的一元二次不等式的一般步骤
?1?化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正.
?2?判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式.
?3?求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根.
?4?画草图.根据一元二次方程根的情况画出对应的二次函数的草图.
?5?写解集.根据图象写出不等式的解集.
1.解下列不等式
(1)2x2-3x-2>0;
(2)x2-4x+4>0;
(3)-x2+2x-3<0;
(4)-3x2+5x-2>0.
[解] (1)∵Δ>0,方程2x2-3x-2=0的根是x1=-,x2=2,
∴不等式2x2-3x-2>0的解集为
.
(2)∵Δ=0,方程x2-4x+4=0的根是x1=x2=2,
∴不等式x2-4x+4>0的解集为.
(3)原不等式可化为x2-2x+3>0,
由于Δ<0,方程x2-2x+3=0无解,
∴不等式-x2+2x-3<0的解集为R.
(4)原不等式可化为3x2-5x+2<0,
由于Δ>0,方程3x2-5x+2=0的两根为x1=,x2=1,
∴不等式-3x2+5x-2>0的解集为.
含参数的一元二次不等式的解法
【例2】 解关于x的不等式ax2-(a+1)x+1<0.
[思路点拨] ①对于二次项的系数a是否分a=0,a<0,a>0三类进行讨论?②当a≠0时,是否还要比较两根的大小?
[解] 当a=0时,原不等式可化为x>1.
当a≠0时,原不等式可化为(ax-1)(x-1)<0.
当a<0时,不等式可化为(x-1)>0,
∵<1,∴x<或x>1.
当a>0时,原不等式可化为(x-1)<0.
若<1,即a>1,则若=1,即a=1,则x∈?;
若>1,即0综上所述,当a<0时,原不等式的解集为;当a=0时,原不等式的解集为{x|x>1};当01时,原不等式的解集为.
解含参数的一元二次不等式的一般步骤
提醒:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并.
2.解关于x的不等式:ax2-2≥2x-ax(a<0).
[解] 原不等式移项得ax2+(a-2)x-2≥0,
化简为(x+1)(ax-2)≥0.
∵a<0,∴(x+1)≤0.
当-2当a=-2时,x=-1;
当a<-2时,-1≤x≤.
综上所述,
当-2当a=-2时,解集为{x|x=-1};
当a<-2时,解集为.
三个“二次”的关系
[探究问题]
1.利用函数y=x2-2x-3的图象说明当y>0、y<0、y=0时x的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?
提示:y=x2-2x-3的图象如图所示.
函数y=x2-2x-3的值满足y>0时自变量x组成的集合,亦即二次函数y=x2-2x-3的图象在x轴上方时点的横坐标x的集合{x|x<-1或x>3};同理,满足y<0时x的取值集合为{x|-1方程ax2+bx+c=0(a≠0)和不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)是函数y=ax2+bx+c(a≠0)的一种特殊情况,它们之间是一种包含关系,也就是当y=0时,函数y=ax2+bx+c(a≠0)就转化为方程,当y>0或y<0时,就转化为一元二次不等式.
2.方程x2-2x-3=0与不等式x2-2x-3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?
提示:方程x2-2x-3=0的解集为{-1,3}.
不等式x2-2x-3>0的解集为{x|x<-1或x>3},观察发现不等式x2-2x-3>0解集的端点值恰好是方程x2-2x-3=0的根.
3.设一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)的解集分别为{x|xx2},{x|x1提示:一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)的解集分别为{x|xx2},{x|x1【例3】 已知关于x的不等式ax2+bx+c>0的解集为{x|2[思路点拨] →→→→
[解] 法一:由不等式ax2+bx+c>0的解集为{x|20,即x2-x+>0,解得x<或x>,所以不等式cx2+bx+a<0的解集为.
法二:由不等式ax2+bx+c>0的解集为{x|21.(变结论)本例中的条件不变,求关于x的不等式cx2-bx+a>0的解集.
[解] 由根与系数的关系知=-5,=6且a<0.
∴c<0,=-,故不等式cx2-bx+a>0,
即x2-x+<0,即x2+x+<0.
解之得.
2.(变条件)若将本例中的条件“关于x的不等式ax2+bx+c>0的解集为{x|2[解] 法一:由ax2+bx+c≥0的解集为知a<0.又×2=<0,则c>0.
又-,2为方程ax2+bx+c=0的两个根,
∴-=,∴=-.
又=-,∴b=-a,c=-a,
∴不等式变为x2+x+a<0,
即2ax2+5ax-3a>0.
又∵a<0,∴2x2+5x-3<0,
所求不等式的解集为.
法二:由已知得a<0 且+2=-,×2=知c>0,
设方程cx2+bx+a=0的两根分别为x1,x2,
则x1+x2=-,x1·x2=,
其中==-,
-===+=-,
∴x1==-3,x2=.
∴不等式cx2+bx+a<0的解集为.
已知以a,b,c为参数的不等式?如ax2+bx+c>0?的解集,求解其他不等式的解集时,一般遵循:
?1?根据解集来判断二次项系数的符号;
?2?根据根与系数的关系把b,c用a表示出来并代入所要解的不等式;
?3?约去 a,将不等式化为具体的一元二次不等式求解.
1.解一元二次不等式的常见方法
(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:
①化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);
②求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c图象的简图;
③由图象得出不等式的解集.
(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.
当m若(x-m)(x-n)<0,则可得{x|m<x<n}.
有口诀如下:大于取两边,小于取中间.
2.含参数的一元二次型的不等式
在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑
(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.
(2)关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).
(3)关于不等式对应的方程根的大小的讨论:x1>x2,
x1=x2,x1<x2.
3.由一元二次不等式的解集可以逆推二次函数的开口及与x轴的交点坐标.
1.思考辨析
(1)mx2-5x<0是一元二次不等式.(  )
(2)若a>0,则一元二次不等式ax2+1>0无解.(  )
(3)若一元二次方程ax2+bx+c=0的两根为x1,x2(x1(4)不等式x2-2x+3>0的解集为R.(  )
[提示] (1)错误.当m=0时,是一元一次不等式;当m≠0时,是一元二次不等式.
(2)错误.因为a>0,所以不等式ax2+1>0恒成立,即原不等式的解集为R.
(3)错误.当a>0时,ax2+bx+c<0的解集为{x|x1(4)正确.因为Δ=(-2)2-12<0,所以不等式x2-2x+3>0的解集为R.
[答案] (1)× (2)× (3)× (4)√ 
2.设a<-1,则关于x的不等式a(x-a)<0的解集为________.
 [因为a<-1,所以a(x-a)·<0?(x-a)·>0.又a<-1,所以>a,所以x>或x3.已知关于x的不等式ax2+bx+c<0的解集是,则ax2-bx+c>0的解集为________.
 [由题意,-2,-是方程ax2+bx+c=0的两个根且a<0,
故解得a=c,b=a.
所以不等式ax2-bx+c>0,即为2x2-5x+2<0,
解得0的解集为.]
4.解下列不等式:
(1)x(7-x)≥12;
(2)x2>2(x-1).
[解] (1)原不等式可化为x2-7x+12≤0,因为方程x2-7x+12=0的两根为x1=3,x2=4,
所以原不等式的解集为{x|3≤x≤4}.
(2)原不等式可以化为x2-2x+2>0,
因为判别式Δ=4-8=-4<0,方程x2-2x+2=0无实根,而抛物线y=x2-2x+2的图象开口向上,
所以原不等式的解集为R.
课件54张PPT。第二章 一元二次函数、方程和不等式2.3 二次函数与一元二次方程、不等式
第1课时 一元二次不等式及其解法点击右图进入…Thank you for watching !第2课时 一元二次不等式的应用
学 习 目 标
核 心 素 养
1.掌握一元二次不等式的实际应用(重点).
2.理解三个“二次”之间的关系.
3.会解一元二次不等式中的恒成立问题(难点).
1.通过分式不等式的解法及不等式的恒成立问题的学习,培养数学运算素养.
2.借助一元二次不等式的应用培养数学建模素养.
1.分式不等式的解法
主导思想:化分式不等式为整式不等式
类型
同解不等式
>0(<0)
(其中a,b,c,d为常数)
法一:
或
法二:
(ax+b)(cx+d)>0(<0)
≥0(≤0)
法一:
或
法二:

>k(其中k为非零实数)
先移项通分转化为上述两种形式
思考1:>0与(x-3)(x+2)>0等价吗?将>0变形为(x-3)(x+2)>0,有什么好处?
提示:等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.
2.(1)不等式的解集为R(或恒成立)的条件
不等式
ax2+bx+c>0
ax2+bx+c<0
a=0
b=0,c>0
b=0,c<0
a≠0


(2)有关不等式恒成立求参数的取值范围的方法
设二次函数
y=ax2+bx+c
若ax2+bx+c≤k恒成立?ymax≤k
若ax2+bx+c≥k恒成立?ymin≥k
3.从实际问题中抽象出一元二次不等式模型的步骤
(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系.
(2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系).
(3)解不等式(或求函数最值).
(4)回扣实际问题.
思考2:解一元二次不等式应用题的关键是什么?
提示:解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x,用x来表示其他未知量,根据题意,列出不等关系再求解.
1.若集合A={x|-1≤2x+1≤3},B=,则A∩B等于(  )
A.{x|-1≤x<0}  B.{x|0C.{x|0≤x<2} D.{x|0≤x≤1}
B [∵A={x|-1≤x≤1},B={x|02.不等式≥5的解集是________.
 [原不等式?≥?≤0?解得03.不等式x2+ax+4<0的解集不是空集,则实数a的取值范围是________.
a>4或a<-4 [∵x2+ax+4<0的解集不是空集,即不等式x2+ax+4<0有解,∴Δ=a2-4×1×4>0,解得,a>4或a<-4.]
4.在如图所示的锐角三角形空地中,欲建一个面积不小于300m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是________.
{x|10≤x≤30} [设矩形高为y,由三角形相似得:=,且x>0,y>0,x<40,y<40,xy≥300,整理得y+x=40,将y=40-x代入xy≥300,整理得x2-40x+300≤0,解得10≤x≤30.]
分式不等式的解法
【例1】 解下列不等式:
(1)<0;
(2)≤1.
[解] (1)<0?(x-3)(x+2)<0?-2∴原不等式的解集为{x|-2(2)∵≤1,
∴-1≤0,
∴≤0,
即≥0.
此不等式等价于(x-4)≥0且x-≠0,
解得x<或x≥4,
∴原不等式的解集为.
1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.
2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.
1.解下列不等式:(1)≥0;(2)<3.
[解] (1)根据商的符号法则,不等式≥0可转化成不等式组
解这个不等式组,可得x≤-1或x>3.
即知原不等式的解集为{x|x≤-1或x>3}.
(2)不等式<3可改写为-3<0,
即<0.
可将这个不等式转化成2(x-1)(x+1)<0,
解得-1所以,原不等式的解集为{x|-1一元二次不等式的应用
【例2】 国家原计划以2 400元/吨的价格收购某种农产品m吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x个百分点,收购量能增加2x个百分点.试确定x的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.
[思路点拨] 将文字语言转换成数学语言:“税率降低x个百分点”即调节后税率为(8-x)%;“收购量能增加2x个百分点”,此时总收购量为m(1+2x%)吨,“原计划的78%”即为2 400m×8%×78%.
[解] 设税率调低后“税收总收入”为y元.
y=2 400m(1+2x%)·(8-x)%
=-m(x2+42x-400)(0依题意,得y≥2 400m×8%×78%,
即-m(x2+42x-400)≥2 400m×8%×78%,
整理,得x2+42x-88≤0,解得-44≤x≤2.
根据x的实际意义,知x的范围为0求解一元二次不等式应用问题的步骤
2.某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.
[解] 设花卉带的宽度为x m(0不等式恒成立问题
[探究问题]
1.若函数y=ax2+2x+2对一切x∈R,f(x)>0恒成立,如何求实数a的取值范围?
提示:若a=0,显然y>0不能对一切x∈R都成立.所以a≠0,此时只有二次函数y=ax2+2x+2的图象与直角坐标系中的x轴无交点且抛物线开口向上时,才满足题意,则解得a>.
2.若函数y=x2-ax-3对-3≤x≤-1上恒有x2-ax-3<0成立,如何求a的范围?
提示:要使x2-ax-3<0在-3≤x≤-1上恒成立,则必使函数y=x2-ax-3在-3≤x≤-1上的图象在x轴的下方,由y的图象可知,此时a应满足
即
解得a<-2.
故当a<-2时,有f(x)<0在-3≤x≤-1上恒成立.
3.若函数y=x2+2(a-2)x+4对任意-3≤a≤1时,y<0恒成立,如何求x的取值范围?
提示:由于本题中已知a的取值范围求x,所以我们可以把函数f(x)转化为关于自变量是a的函数,求参数x的取值问题,则令y=2x·a+x2-4x+4.
要使对任意-3≤a≤1,y<0恒成立,只需满足

即
因为x2-2x+4<0的解集是空集,
所以不存在实数x,使函数y=x2+2(a-2)x+4对任意-3≤a≤1,y<0恒成立.
【例3】 已知y=x2+ax+3-a,若-2≤x≤2,x2+ax+3-a≥0恒成立,求a的取值范围.
[思路点拨] 对于含参数的函数在某一范围上的函数值恒大于等于零的问题,可以利用函数的图象与性质求解.
[解] 设函数y=x2+ax+3-a在-2≤x≤2时的最小值为关于a的一次函数,设为g(a),则
(1)当对称轴x=-<-2,即a>4时,g(a)=(-2)2+(-2)a+3-a=7-3a≥0,解得a≤,与a>4矛盾,不符合题意.
(2)当-2≤-≤2,即-4≤a≤4时,g(a)=3-a-≥0,解得-6≤a≤2,此时-4≤a≤2.
(3)当->2,即a<-4时,g(a)=22+2a+3-a=7+a≥0,解得a≥-7,此时-7≤a<-4.
综上,a的取值范围为-7≤a≤2.
1.(变结论)本例条件不变,若y=x2+ax+3-a≥2恒成立,求a的取值范围.
[解] 若-2≤x≤2,x2+ax+3-a≥2恒成立可转化为:
当-2≤x≤2时,ymin≥2
?
或
或
解得a的取值范围为-5≤x≤-2+2.
2.(变条件)将例题中的条件“y=x2+ax+3-a,-2≤x≤2,y≥0恒成立”变为“不等式x2+2x+a2-3>0的解集为R”,求a的取值范围.
[解] 法一:∵不等式x2+2x+a2-3>0的解集为R,
∴函数y=x2+2x+a2-3的图象应在x轴上方,
∴Δ=4-4(a2-3)<0,
解得a>2或a<-2.
法二:令y=x2+2x+a2-3,要使x2+2x+a2-3>0的解集为R,则a满足ymin=a2-4>0,解得a>2或a<-2.
法三:由x2+2x+a2-3>0,得a2>-x2-2x+3,
即a2>-(x+1)2+4,要使该不等式在R上恒成立,必须使a2大于-(x+1)2+4的最大值,即a2>4,故a>2或a<-2.
1.不等式ax2+bx+c>0的解是全体实数(或恒成立)的条件是:当a=0时,b=0,c>0;
当a≠0时,
2.不等式ax2+bx+c<0的解是全体实数(或恒成立)的条件是:当a=0时,b=0,c<0;
当a≠0时,
3.解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.
1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.当不等式含有等号时,分母不为零.
2.对于某些恒成立问题,分离参数是一种行之有效的方法.这是因为将参数分离后,问题往往会转化为函数问题,从而得以迅速解决.当然,这必须以参数容易分离作为前提.分离参数时,经常要用到以下简单结论:
(1)若f(x)有最大值f(x)max,则a>f(x)恒成立?a>f(x)max;(2)若f(x)有最小值f(x)min,则a3.在某集合A中恒成立问题
设y=ax2+bx+c(a≠0)
若ax2+bx+c>0在集合A中恒成立,则集合A是不等式ax2+bx+c>0的解集的子集,可以先求解集,再由子集的含义求解参数的取值(范围).
1.思考辨析
(1)不等式>1的解集为x<1.(  )
(2)求解m>ax2+bx+c(a<0)恒成立时,可转化为求解y=ax2+bx+c的最小值,从而求出m的范围.(  )
[提示] (1)>1?-1>0?<0?{x|0(2)m>ax2+bx+c(a<0)恒成立转化为m>ymax,故(2)错.
[答案] (1)× (2)× 
2.不等式>0的解集为________.
{x|-4-1} [原式可转化为(x+1)(x+2)2(x+3)(x+4)>0,
根据数轴穿根法,解集为-4-1.]
3.对于任意实数x,不等式(a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是________.
-2<a≤2 [当a-2=0,即a=2时,-4<0恒成立;
当a-2≠0,即a≠2时,则有

解得-2<a<2.综上,实数a的取值范围是-2<a≤2.]
4.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?
[解] 设每盏台灯售价x元,则x≥15,并且日销售收入为x[30-2(x-15)],由题意知,当x≥15时,有x[30-2(x-15)]>400,解得:15≤x<20.
所以为了使这批台灯每天获得400元以上的销售收入,应当制定这批台灯的销售价格为15≤x<20.
课件46张PPT。第二章 一元二次函数、方程和不等式2.3 二次函数与一元二次方程、不等式
第2课时 一元二次不等式的应用点击右图进入…Thank you for watching !课时分层作业(十二) 一元二次不等式及其解法
(建议用时:60分钟)
[合格基础练]
一、选择题
1.不等式9x2+6x+1≤0的解集是(  )
A. B.
C.? D.
D [(3x+1)2≤0,
∴3x+1=0,∴x=-.]
2.若集合A={x|(2x+1)(x-3)<0},B={x|x∈N*,x≤5},则A∩B等于(  )
A.{1,2,3} B.{1,2}
C.{4,5} D.{1,2,3,4,5}
B [(2x+1)(x-3)<0,∴-又x∈N*且x≤5,则x=1,2.]
3.若0A. B.
C. D.
D [0<t<1时,t<,∴解集为.]
4.一元二次方程ax2+bx+c=0的两根为-2,3,a<0,那么ax2+bx+c>0的解集为(  )
A.{x|x>3或x<-2} B.{x|x>2或x<-3}
C.{x|-2C [由题意知,-2+3=-,-2×3=,∴b=-a,c=-6a,
∴ax2+bx+c=ax2-ax-6a>0,
∵a<0,∴x2-x-6<0,
∴(x-3)(x+2)<0,∴-25.在R上定义运算“⊙”:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为(  )
A.0<x<2 B.-2<x<1
C.x<-2或x>1 D.-1<x<2
B [根据给出的定义得,x⊙(x-2)=x(x-2)+2x+(x-2)=x2+x-2=(x+2)(x-1),又x⊙(x-2)<0,则(x+2)(x-1)<0,故不等式的解集是-2<x<1.]
二、填空题
6.不等式-x2-3x+4>0的解集为________.
{x|-4<x<1} [由-x2-3x+4>0得x2+3x-4<0,解得-47.若关于x的不等式-x2+2x>mx的解集是{x|0<x<2},则实数m的值是________.
1 [将原不等式化为x2+(m-2)x<0,即x(x+2m-4)<0,故0,2是对应方程x(x+2m-4)=0的两个根,代入得m=1.]
8.已知集合A={x|3x-2-x2<0},B={x|x-a<0},且B?A,则a的取值范围为________.
{a|a≤1} [A={x|3x-2-x2<0}={x|x2-3x+2>0}={x|x<1或x>2},B={x|x若B?A,如图,则a≤1.
]
三、解答题
9.求下列不等式的解集:
(1)x2-5x+6>0;
(2)-x2+3x-5>0.
[解] (1)方程x2-5x+6=0有两个不等实数根x1=2,x2=3,又因为函数y=x2-5x+6的图象是开口向上的抛物线,且抛物线与x轴有两个交点,分别为(2,0)和(3,0),其图象如图(1).根据图象可得不等式的解集为{x|x>3或x<2}.
(2)原不等式可化为x2-6x+10<0,对于方程x2-6x+10=0,因为Δ=(-6)2-40<0,所以方程无解,又因为函数y=x2-6x+10的图象是开口向上的抛物线,且与x轴没有交点,其图象如图(2).根据图象可得不等式的解集为?.
10.解关于x的不等式x2-(3a-1)x+(2a2-2)>0.
[解] 原不等式可化为
[x-(a+1)][x-2(a-1)]>0,
讨论a+1与2(a-1)的大小
(1)当a+1>2(a-1),即a<3时,x>a+1或x<2(a-1).
(2)当a+1=2(a-1),即a=3时,x≠4.
(3)当a+1<2(a-1),即a>3时,x>2(a-1)或x综上:当a<3时,解集为{x|x>a+1或x<2(a-1)},
当a=3时,解集为{x|x≠4},
当a>3时,解集为{x|x>2(a-1)或x[等级过关练]
1.不等式mx2-ax-1>0(m>0)的解集可能是(  )
A. B.R
C. D.?
A [因为Δ=a2+4m>0,所以函数y=mx2-ax-1的图象与x轴有两个交点,又m>0,所以原不等式的解集不可能是B、C、D,故选A.]
2.关于x的不等式ax2+bx+2>0的解集为{x|-10的解集为(  )
A.{x|-2B.{x|x>2或x<-1}
C.{x|x>1或x<-2}
D.{x|x<-1或x>1}
C [∵ax2+bx+2>0的解集为{x|-1∴
解得
∴bx2-ax-2>0,即x2+x-2>0,
解得x>1或x<-2.]
3.已知不等式ax2-bx-1≥0的解集是,则不等式x2-bx-a<0的解集是________.
{x|2<x<3} [由题意知-,-是方程ax2-bx-1=0的根,且a<0,由根与系数的关系,得
+=,×=-,解得a=-6,b=5,∴不等式x2-bx-a<0,即为x2-5x+6<0的解集为{x|2<x<3}.]
4.设不等式x2-2ax+a+2≤0的解集为A,若A?{x|1≤x≤3},则a的取值范围为________.
-1<a≤ [设y=x2-2ax+a+2,因为不等式x2-2ax+a+2≤0的解集为A,且A?{x|1≤x≤3},
所以对于方程x2-2ax+a+2=0.
若A=?,则Δ=4a2-4(a+2)<0,
即a2-a-2<0,解得-1<a<2.
若A≠?,
则
即
所以2≤a≤.
综上,a的取值范围为-1<a≤.]
5.已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.
[解] 原不等式可化为(2x-a-1)(x+2a-3)<0,
由x=0适合不等式得(a+1)(2a-3)>0,
所以a<-1或a>.
若a<-1,则-2a+3-=(-a+1)>5,
所以3-2a>,
此时不等式的解集是;
若a>,由-2a+3-=(-a+1)<-,
所以3-2a<,
此时不等式的解集是.
综上,当a<-1时,原不等式的解集为,当a>时,原不等式的解集为.
课时分层作业(十三) 一元二次不等式的应用
(建议用时:60分钟)
[合格基础练]
一、选择题
1.不等式≥0的解集为(  )
A.{x|-1C.{x|-1≤x≤1} D.{x|-1B [原不等式?
∴-1≤x<1.]
2.不等式<0的解集为(  )
A.{x|-1B.{x|1C.{x|2D.{x|-1A [原不等式?
∴-13.不等式组有解,则实数a的取值范围是(  )
A.-1<a<3 B.a<-1或a>3
C.-3<a<1 D.a<-3或a>1
A [由题意得,a2+1∴只须4+2a>a2+1,即a2-2a-3<0,
∴-14.二次不等式ax2+bx+c<0的解集为全体实数的条件是(  )
A. B.
C. D.
D [二次不等式ax2+bx+c<0的解集为全体实数等价于二次函数y=ax2+bx+c的图象全部在x轴下方,需要开口向下,且与x轴无交点,故需要.]
5.在R上定义运算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围为(  )
A.-1C.-C [∵(x-a)⊙(x+a)=(x-a)(1-x-a),
∴不等式(x-a)⊙(x+a)<1,
即(x-a)(1-x-a)<1对任意实数x恒成立,即x2-x-a2+a+1>0对任意实数x恒成立,
所以Δ=1-4(-a2+a+1)<0,
解得-二、填空题
6.当1<x<2时,不等式x2+mx+4<0恒成立,则m的取值范围是________.
m≤-5 [设y=x2+mx+4,要使1<x<2时,不等式x2+mx+4<0恒成立.
则有解得m≤-5.]
7.若0<a<1,则不等式(a-x)>0的解集是________.
 [原不等式为(x-a)<0,
由0<a<1,得a<,∴a<x<.]
8.某地每年销售木材约20万m3,每立方米价格为2 400元.为了减少木材消耗,决定按销售收入的t%征收木材税,这样每年的木材销售量减少t万m3.为了既减少木材消耗又保证税金收入每年不少于900万元,则t的取值范围是________.
3≤t≤5 [设按销售收入的t%征收木材税时,税金收入为y万元,则y=2 400××t%=60(8t-t2).
令y≥900,即60(8t-t2)≥900,解得3≤t≤5.]
三、解答题
9.若不等式(1-a)x2-4x+6>0的解集是{x|-3(1)解不等式2x2+(2-a)x-a>0;
(2)b为何值时,ax2+bx+3≥0的解集为R?
[解] (1)由题意知1-a<0,且-3和1是方程(1-a)x2-4x+6=0的两根,
∴解得a=3.
∴不等式2x2+(2-a)x-a>0,
即为2x2-x-3>0,解得x<-1或x>,
∴所求不等式的解集为.
(2)ax2+bx+3≥0,即3x2+bx+3≥0,
若此不等式解集为R,则Δ=b2-4×3×3≤0,
∴-6≤b≤6.
10.某地区上年度电价为0.8元/kw·h,年用电量为a kw·h.本年度计划将电价降低到0.55元/kw·h至0.75元/kw·h之间,而用户期望电价为0.4元/kw·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kw·h.
(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;
(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?
[解] (1)设下调后的电价为x元/千瓦时,依题意知,用电量增至+a,电力部门的收益为
y=(x-0.3)(0.55≤x≤0.75).
(2)依题意,有

整理,得
解此不等式,得0.60≤x≤0.75.
∴当电价最低定为0.60元/千瓦时时,仍可保证电力部门的收益比上年度至少增长20%.
[等级过关练]
1.下列选项中,使不等式x<A.x<-1 B.-1<x<0
C.0<x<1 D.x>1
A [法一:取x=-2,知符合x<法二:由题知,不等式等价于·<0,即<0,从而<0,解得x<-1,选A.]
2.若不等式2kx2+kx-<0对一切实数x都成立,则k的取值范围为(  )
A.-3<k<0 B.-3≤k<0
C.-3≤k≤0 D.-3<k≤0
D [当k=0时,显然成立;
当k≠0时,即一元二次不等式2kx2+kx-<0对一切实数x都成立,则解得-3<k<0.
综上,满足不等式2kx2+kx-<0对一切实数x都成立的k的取值范围是-3<k≤0.]
3.不等式|x(x-2)|>x(x-2)的解集是________.
{x|0<x<2} [不等式|x(x-2)|>x(x-2)的解集即x(x-2)<0的解集,解得0<x<2,故不等式的解集为{x|0<x<2}.]
4.不等式x2+8y2≥λy(x+y)对于任意的x,y∈R恒成立,则实数k的取值范围为________.
-8≤λ≤4 [因为x2+8y2≥λy(x+y)对于任意的x,y∈R恒成立,
所以x2+8y2-λy(x+y)≥0对于任意的x,y∈R恒成立,
即x2-λyx+(8-λ)y2≥0恒成立,
由二次不等式的性质可得,
Δ=λ2y2+4(λ-8)y2=y2(λ2+4λ-32)≤0,
所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.]
5.已知二次函数y=ax2+bx+c,且不等式ax2+bx+c>-2x的解集为{x|1<x<3}.
(1)若方程ax2+bx+c+6a=0有两个相等的实根,求y=ax2+bx+c的函数式;
(2)若y=ax2+bx+c的最大值为正数,求a的取值范围.
[解] (1)∵ax2+bx+c+2x>0的解集为(1,3),
∴ax2+(b+2)x+c=a(x-1)(x-3)且a<0,
ax2+bx+c=ax2-(2+4a)x+3a.①
又∵ax2+bx+c+6a=0化简为ax2-(2+4a)x+9a=0,
有两个相等的实根,
∴Δ=[-(2+4a)]2-4a×9a=0,
即5a2-4a-1=0,解得a=-或a=1(舍去).
将a=-代入①得y=-x2-x-.
(2)由y=ax2-2(1+2a)x+3a=a2-及a<0,
可得y的最大值为-,由解得a<-2-或-2+<a<0,
故当y的最大值为正数时,实数a的取值范围是a<-2-或-2+<a<0.