人教B版数学选修2-3(课件41+教案+练习)第1章 章末复习课

文档属性

名称 人教B版数学选修2-3(课件41+教案+练习)第1章 章末复习课
格式 zip
文件大小 4.0MB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2019-09-28 22:22:46

文档简介


[自我校对] ①分类加法计数原理 ②分步乘法计数原理 ③排列 ④排列数公式 ⑤组合数公式 ⑥组合数 ⑦二项展开式的通项 ⑧对称性 ⑨增减性
两个计数原理的应用
分类加法计数原理和分步乘法计数原理是本部分内容的基础,对应用题的考查,经常要对问题进行分类或者分步进而分析求解.
“分类”表现为其中任何一类均可独立完成所给事情.“分步”表现为必须把各步骤均完成,才能完成所给事情,所以准确理解两个原理的关键在于弄清分类加法计数原理强调完成一件事情的几类办法互不干扰,不论哪一类办法中的哪一种方法都能够独立完成事件.分步乘法计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法.
【例1】 王华同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读.
(1)若他从这些参考书中带一本去图书馆,有多少种不同的带法?
(2)若带外语、数学、物理参考书各一本,有多少种不同的带法?
(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?
【精彩点拨】 解决两个原理的应用问题,首先应明确所需完成的事情是什么,再分析每一种做法使这件事是否完成,从而区分分类加法计数原理和分步乘法计数原理.
【解】 (1)完成的事情是带一本书,无论带外语书,还是数学书、物理书,事情都已完成,从而确定为应用分类加法计数原理,结果为5+4+3=12(种).
(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理书中各选1本后,才能完成这件事,因此应用分步乘法计数原理,结果为5×4×3=60(种).
(3)选1本外语书和选1本数学书应用分步乘法计数原理,有5×4=20种选法;同样,选外语书、物理书各1本,有5×3=15种选法;选数学书、物理书各1本,有4×3=12种选法.即有三类情况,应用分类加法计数原理,结果为20+15+12=47(种).
应用两个计数原理解决应用问题时主要考虑三方面的问题:?1?要做什么事;?2?如何去做这件事;?3?怎样才算把这件事完成了.并注意计数原则:分类用加法,分步用乘法.
1.如图所示的电路图,从A到B共有________条不同的线路可通电.
【解析】 先分三类.第一类,经过支路①有3种方法;第二类,经过支路②有1种方法;第三类,经过支路③有2×2=4(种)方法,所以总的线路条数N=3+1+4=8.
【答案】 8
排列、组合的应用
排列、组合应用题是高考的重点内容,常与实际问题结合命题,要认真审题,明确问题本质,利用排列、组合的知识解决.
【例2】 (1)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲不到银川,乙不到西宁,共有多少种不同派遣方案?
(2)在高三一班元旦晚会上,有6个演唱节目,4个舞蹈节目.
①当4个舞蹈节目要排在一起时,有多少种不同的节目安排顺序?
②当要求每2个舞蹈节目之间至少安排1个演唱节目时,有多少种不同的节目安排顺序?
③若已定好节目单,后来情况有变,需加上诗朗诵和快板2个节目,但不能改变原来节目的相对顺序,有多少种不同的节目演出顺序?
【精彩点拨】 按照“特殊元素先排法”分步进行,先特殊后一般.
【解】 (1)因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:
①若甲乙都不参加,则有派遣方案A种;
②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A种方法,所以共有3A种方法;
③若乙参加而甲不参加同理也有3A种;
④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余学生到另两个城市有A种,共有7A种方法.
所以共有不同的派遣方法总数为A+3A+3A+7A=4 088种.
(2)①第一步,先将4个舞蹈节目捆绑起来,看成1个节目,与6个演唱节目一起排,有A=5 040种方法;第二步,再松绑,给4个节目排序,有A=24种方法.
根据分步乘法计数原理,一共有5 040×24=120 960种.
②第一步,将6个演唱节目排成一列(如下图中的“□”),一共有A=720种方法.
×□×□×□×□×□×□×
第二步,再将4个舞蹈节目排在一头一尾或两个节目中间(即图中“×”的位置),这样相当于7个“×”选4个来排,一共有A=840种.
根据分步乘法计数原理,一共有720×840=604 800种.
③若所有节目没有顺序要求,全部排列,则有A种排法,但原来的节目已定好顺序,需要消除,所以节目演出的方式有=A=132种排法.
解排列、组合应用题的解题策略
1.特殊元素优先安排的策略.
2.合理分类和准确分步的策略.
3.排列、组合混合问题先选后排的策略.
4.正难则反、等价转化的策略.
5.相邻问题捆绑处理的策略.
6.不相邻问题插空处理的策略.
7.定序问题除序处理的策略.
8.分排问题直排处理的策略.
9.“小集团”排列问题中先整体后局部的策略.
10.构造模型的策略.
简单记成:
合理分类,准确分步;
特殊优先,一般在后;
先取后排,间接排除;
集团捆绑,间隔插空;
抽象问题,构造模型;
均分除序,定序除序.
2.(1)一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是(  )
A.40    B.74
C.84 D.200
(2)A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有(  )
A.60种 B.48种
C.30种 D.24种
【解析】 (1)分三类:
第一类,前5个题目的3个,后4个题目的3个;
第二类,前5个题目的4个,后4个题目的2个;
第三类,前5个题目的5个,后4个题目的1个.由分类加法计数原理得CC+CC+CC=74.
(2)由题意知,不同的座次有AA=48种,故选 B.
【答案】 (1)B (2)B
二项式定理问题的处理方法和技巧
对于二项式定理的考查常出现两类问题,一类是直接运用通项公式来求特定项.另一类,需要运用转化思想化归为二项式定理来处理问题.
【例3】 (1)若二项式7的展开式中的系数是84,则实数a=(  )
A.2 B.
C.1 D.
(2)已知(1+x+x2)n(n∈N+)的展开式中没有常数项,且2≤n≤8,则n=________.
(3)设(3x-1)6=a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0,则a6+a4+a2+a0的值为________.
【精彩点拨】 (1)、(2)利用二项式定理的通项求待定项;
(3)通过赋值法求系数和.
【解】 (1)二项式7的展开式的通项公式为Tr+1=C(2x)7-rr=C27-rarx7-2r,令7-2r=-3,得r=5.故展开式中的系数是C22a5=84,解得a=1.
(2)n展开式的通项是Tr+1=Cxn-rr=Cxn-4r,r=0,1,2,…,n,
由于(1+x+x2)n的展开式中没有常数项,所以Cxn-4r,xCxn-4r=Cxn-4r+1和x2Cxn-4r=Cxn-4r+2都不是常数,则n-4r≠0,n-4r+1≠0,n-4r+2≠0,又因为2≤n≤8,所以n≠2,3,4,6,7,8,故取n=5.
(3)令x=1,
得a6+a5+a4+a3+a2+a1+a0=26=64.
令x=-1,得a6-a5+a4-a3+a2-a1+a0=(-4)6=4 096.
两式相加,得2(a6+a4+a2+a0)=4 160,
所以a6+a4+a2+a0=2 080.
【答案】 (1)C (2)5 (3)2 080
1.解决与二项展开式的项有关的问题时,通常利用通项公式.
2.解决二项展开式项的系数(或和)问题常用赋值法.
3.(1)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=(  )
A.45   B.60   C.120   D.210
(2)设a∈Z,且0≤a<13,若512 016+a能被13整除,则a=(  )
A.0 B.1 C.11 D.12
【解析】 (1)因为f(m,n)=CC,
所以f(3,0)+f(2,1)+f(1,2)+f(0,3)
=CC+CC+CC+CC=120.
(2)512 016+a=(13×4-1)2 016+a,被13整除余1+a,结合选项可得a=12时,512 016+a能被13整除.
【答案】 (1)C (2)D
排列、组合中的分组与分配问题
n个不同元素按照条件分配给k个不同的对象称为分配问题,分定向分配与不定向分配两种问题;将n个不同元素按照某种条件分成k组,称为分组问题,分组问题有不平均分组、平均分组、部分平均分组三种情况.分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使2组元素个数相同,但因所属对象不同,仍然是可区分的.对于后者必须先分组再排列.
【例4】 按下列要求分配6本不同的书,各有多少种不同的分配方式?
(1)分成三份,1份1本,1份2本,1份3本;
(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;
(3)平均分成三份,每份2本;
(4)平均分配给甲、乙、丙三人,每人2本;
(5)分成三份,1份4本,另外两份每份1本;
(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;
(7)甲得1本,乙得1本,丙得4本.
【精彩点拨】 这是一个分配问题,解题的关键是搞清事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.
【解】 (1)无序不均匀分组问题.先选1本有C种选法,再从余下的5本中选2本有C种选法,最后余下3本全选有C种选法.故共有CCC=60(种).
(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在第(1)问基础上,还应考虑再分配,共有CCCA=360(种).
(3)无序均匀分组问题.先分三步,则应是CCC种方法,但是这里出现了重复.不妨记6本书为A,B,C,D,E,F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则CCC种分法中还有(AB,EF,CD),(AB,CD,EF),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共A种情况,而这A种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有=15(种).
(4)有序均匀分组问题.在第(3)问基础上再分配给3个人,共有分配方式·A=CCC=90(种).
(5)无序部分均匀分组问题.共有=15(种).
(6)有序部分均匀分组问题.在第(5)问基础上再分配给3个人,共有分配方式·A=90(种).
(7)直接分配问题.甲选1本有C种方法,乙从余下5本中选1本有C种方法,余下4本留给丙有C种方法.共有CCC=30(种).
均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数.
4.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有多少种?
【解】 取出的4张卡片所标数字之和等于10,共有3种情况:1144,2233,1234.
所取卡片是1144的共有A种排法.
所取卡片是2233的共有A种排法.
所取卡片是1234,则其中卡片颜色可为无红色,1张红色,2张红色,3张红色,全是红色,共有排法A+CA+CA+CA+A=16A种.所以共有18A=432种.
1.(x2+x+y)5的展开式中,x5y2的系数为(  )
A.10    B.20    C.30    D.60
【解析】 (x2+x+y)5=[(x2+x)+y]5,
含y2的项为T3=C(x2+x)3·y2.
其中(x2+x)3中含x5的项为Cx4·x=Cx5.
所以x5y2的系数为CC=30.故选C.
【答案】 C
2.如图所示,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(  )
A.24 B.18 C.12 D.9
【解析】 从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.
【答案】 B
3.(2x+)5的展开式中,x3的系数是________.(用数字填写答案)
【解析】 (2x+)5展开式的通项为
Tr+1=C(2x)5-r()r=25-r·C·x5-.
令5-=3,得r=4.
故x3的系数为25-4·C=2C=10.
【答案】 10
课件41张PPT。第一章 计数原理章末复习课Thank you for watching !章末综合测评(一) 计数原理
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.C+C等于(  )
A.45  B.55
C.65 D.以上都不对
【解析】 C+C=C+C=55,故选B.
【答案】 B
2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有(  )
A.10种 B.20种
C.25种 D.32种
【解析】 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,故选 D.
【答案】 D
3.在(x2+3x+2)5的展开式中x的系数为(  )
A.140 B.240
C.360 D.800
【解析】 由(x2+3x+2)5=(x+1)5(x+2)5,知(x+1)5的展开式中x的系数为C,常数项为1,(x+2)5的展开式中x的系数为C·24,常数项为25.因此原式中x的系数为C·25+C·24=240.
【答案】 B
4.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有(  )
A.16种 B.36种
C.42种 D.60种
【解析】 分两类.第一类:同一城市只有一个项目的有A=24种;第二类:一个城市2个项目,另一个城市1个项目,有C·C·A=36种,则共有36+24=60种.
【答案】 D
5.5人站成一排,甲乙之间恰有一个人的站法有(  )
A.18种 B.24种
C.36种 D.48种
【解析】 首先从除甲乙之外的三人中随机抽出一人放在甲乙之间,有3种可能,甲乙之间的人选出后,甲乙的位置可以互换,故甲乙的位置有2种可能,最后,把甲乙及其中间的那个人看作一个整体,与剩下的两个人全排列是A=6,所以共有3×2×6=36(种),故答案为C.
【答案】 C
6.关于(a-b)10的说法,错误的是(  )
A.展开式中的二项式系数之和为1 024
B.展开式中第6项的二项式系数最大
C.展开式中第5项和第7项的二项式系数最大
D.展开式中第6项的系数最小
【解析】 由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.
【答案】 C
7.如图所示,用五种不同的颜色给图中的A,B,C,D,E,F六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共(  )
A.1 240种 B.360种
C.1 920种 D.264种
【解析】 由于A和E或F可以同色,B和D或F可以同色,C和D或E可以同色,所以当五种颜色都选择时,选法有CCA种;当五种颜色选择四种时,选法有CC×3×A种;当五种颜色选择三种时,选法有C×2×A种,所以不同的涂色方法共CCA+CC×3×A+C×2×A=1 920种.故选C.
【答案】 C
8.某计算机商店有6台不同的品牌机和5台不同的兼容机,从中选购5台,且至少有品牌机和兼容机各2台,则不同的选购方法有(  )
A.1 050种 B.700种
C.350种 D.200种
【解析】 分两类:(1)从6台不同的品牌机中选3台和从5台不同的兼容机中选2台;
(2)从6台不同的品牌机中选2台和从5台不同的兼容机中选3台.
所以不同的选购方法有CC+CC=350种.
【答案】 C
9.设(1-3x)9=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|的值为(  )
A.29 B.49
C.39 D.59
【解析】 由于a0,a2,a4,a6,a8为正,a1,a3,a5,a7,a9为负,故令x=-1,得(1+3)9=a0-a1+a2-a3+…+a8-a9=|a0|+|a1|+…+|a9|,故选B.
【答案】 B
10.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是(  )
A.60 B.48
C.36 D.24
【解析】 在长方体中,对每一条棱都有两个面(侧面或底面)和一个对角面(对不在同一个面上的一对互相平行的棱的截面)与它平行,可构成3×12=36个“平行线面组”,对每一条面对角线,都有一个面与它平行,可组成12个“平行线面组”,所以“平行线面组”的个数为36+12=48,故选 B.
【答案】 B
11.某同学忘记了自己的QQ号的后六位,但记得QQ号后六位是由一个1,一个2,两个5和两个8组成的,于是用这六个数随意排成一个六位数,输入电脑尝试,那么他找到自己的QQ号最多尝试次数为(  )
A.96 B.180
C.360 D.720
【解析】 由这6个数字组成的六位数个数为=180,即最多尝试次数为180.故选 B.
【答案】 B
12.设(1+x)n=a0+a1x+…+anxn,若a1+a2+…+an=63,则展开式中系数最大项是(  )
A.15x3 B.20x3
C.21x3 D.35x3
【解析】 令x=0,得a0=1,
再令x=1,得2n=64,所以n=6,
故展开式中系数最大项是
T4=Cx3=20x3.故选 B.
【答案】 B
二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)
13.某科技小组有女同学2名、男同学x名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为________.
【解析】 由题意得C·C=20,解得x=5.
【答案】 5
14.(1.05)6的计算结果精确到0.01的近似值是________.
【解析】 (1.05)6=(1+0.05)6=C+C×0.05+C
×0.052+C×0.053+…=1+0.3+0.037 5+0.002 5+…≈1.34.
【答案】 1.34
15.观察下列各式:
C=40;
C+C=41;
C+C+C=42;
C+C+C+C=43;
……
照此规律,当n∈N+时,C+C+C+…+C=________.
【解析】 观察每行等式的特点,每行等式的右端都是幂的形式,底数均为4,指数与等式左端最后一个组合数的上标相等,故有C+C+C+…+C=4n-1.
【答案】 4n-1
16.设a≠0,n是大于1的自然数,n的展开式为a0+a1x+a2x2+…+anxn.若点Ai(i,ai)(i=0,1,2)的位置如图所示,则a=________.
【解析】 由题意知A0(0,1),A1(1,3),A2(2,4),
故a0=1,a1=3,a2=4.
由n的展开式的通项公式知Tr+1=Cr(r=0,1,2,…,n).故=3,=4,解得a=3.
【答案】 3
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知试求x,n的值.
【解】 ∵C=C=C,∴n-x=2x或x=2x(舍去),∴n=3x.
由C=C,得
=·,
整理得
3(x-1)!(n-x+1)!=11(x+1)!(n-x-1)!,
3(n-x+1)(n-x)=11(x+1)x.
将n=3x代入,整理得6(2x+1)=11(x+1),
∴x=5,n=3x=15.
18.(本小题满分12分)利用二项式定理证明:49n+16n-1(n∈N+)能被16整除.
【证明】 49n+16n-1=(48+1)n+16n-1
=C·48n+C·48n-1+…+C·48+C+16n-1
=16(C·3×48n-1+C·3×48n-2+…+C·3+n).
所以49n+16n-1能被16整除.
19.(本小题满分12分)一个口袋内有4个不同的红球,6个不同的白球,
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?
【解】 (1)将取出4个球分成三类情况:
①取4个红球,没有白球,有C种;
②取3个红球1个白球,有CC种;
③取2个红球2个白球,有CC种,
故有C+CC+CC=115种.
(2)设取x个红球,y个白球,
则故或或
因此,符合题意的取法共有CC+CC+CC=186种.
20.(本小题满分12分)设(2x-1)10=a0+a1x+a2x2+…+a10x10,求下列各式的值:
(1)a0+a1+a2+…+a10;
(2)a6.
【解】 (1)令x=1,得a0+a1+a2+…+a10=(2-1)10=1.
(2)a6即为含x6项的系数,Tr+1=C(2x)10-r·(-1)r=C(-1)r210-r·x10-r,所以当r=4时,T5=C(-1)426x6=13 440x6,即a6=13 440.
21.(本小题满分12分)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)排成前后两排,前排3人,后排4人;
(2)全体站成一排,甲不站排头也不站排尾;
(3)全体站成一排,女生必须站在一起;
(4)全体站成一排,男生互不相邻.
【解】 (1)共有A=5 040种方法.
(2)甲为特殊元素.先排甲,有5种方法,其余6人有A种方法,故共有5×A=3 600种方法.
(3)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有A种方法,再将4名女生进行全排列,有A种方法,故共有A×A=576种方法.
(4)(插空法)男生不相邻,而女生不做要求,所以应先排女生,有A种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A种方法,故共有A×A=1 440种方法.
22.(本小题满分12分)已知集合A={x|1(1)从A∪B中取出3个不同的元素组成三位数,则可以组成多少个?
(2)从集合A中取出1个元素,从集合B中取出3个元素,可以组成多少个无重复数字且比4 000大的自然数?
【解】 由1(1)从A∪B中取出3个不同的元素,可以组成A=120个三位数.
(2)若从集合A中取元素3,则3不能作千位上的数字,
有C·C·A=180个满足题意的自然数;
若不从集合A中取元素3,则有CCA=384个满足题意的自然数.
所以,满足题意的自然数的个数共有180+384=564个.