人教B版数学选修2-3(课件44+44+教案+练习)1.1 基本计数原理

文档属性

名称 人教B版数学选修2-3(课件44+44+教案+练习)1.1 基本计数原理
格式 zip
文件大小 7.8MB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2019-09-28 22:24:03

文档简介


1.1 基本计数原理
第1课时 基本计数原理
学习目标:1.通过实例,能总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确地理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)
教材整理1 分类加法计数原理
阅读教材P3中间部分,完成下列问题.
做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn种不同的方法.
判断(正确的打“√”,错误的打“×”)
(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(  )
(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.(  )
(3)从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有7种.(  )
(4)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.(  )
【解析】 (1)× 在分类加法计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的.
(2)√ 在分类加法计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这件事.
(3)√ 由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.
(4)√ 根据分类加法计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种).
【答案】 (1)× (2)√ (3)√ (4)√
教材整理2 分步乘法计数原理
阅读教材P3后半部分内容,完成下列问题.
做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有mn种不同的方法.那么完成这件事共有N=m1×m2×…×mn种不同的方法.
判断(正确的打“√”,错误的打“×”)
(1)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(  )
(2)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(  )
(3)已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为9个.(  )
(4)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.(  )
【解析】 (1)√ 因为在分步乘法计数原理中的每一步都有多种方法,而每种方法各不相同.
(2)× 因为在分步乘法计数原理中,要完成这件事需分两步,而每步都不能完成这件事,只有各步都完成了,这件事才算完成.
(3)√ 因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.
(4)× 因为每个项目中的冠军都有3种可能的情况,根据分步乘法计数原理共有34种不同的夺冠情况.
【答案】 (1)√ (2)× (3)√ (4)×
分类加法计数原理的应用
【例1】 (1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?
(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?
【精彩点拨】 (1)按所选组长来自不同班级为分类标准.(2)按个位(或十位)取0~9不同的数字进行分类.
【解】 (1)分四类:
从一班中选一人,有4种选法;
从二班中选一人,有5种选法;
从三班中选一人,有6种选法;
从四班中选一人,有7种选法.
共有不同选法N=4+5+6+7=22(种).
(2)法一 按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).
法二 按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).
1.应用分类加法计数原理解题的策略
(1)标准明确:明确分类标准,依次确定完成这件事的各类方法.
(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏.
(3)方法独立:确定的每一类方法必须能独立地完成这件事.
2.利用分类加法计数原理解题的一般思路
1.(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有(  )
A.1种   B.2种   C.3种   D.4种
(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有________种不同的取法.
【解析】 (1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.
(2)有3类不同方案:
第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;
第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;
第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法.
其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有6+5+4=15种.
【答案】 (1)C (2)15
分步乘法计数原理的应用
【例2】 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?
【精彩点拨】 根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数原理.
【解】 按从左到右的顺序拨号可以分四步完成:
第一步,有10种拨号方式,所以m1=10;
第二步,有10种拨号方式,所以m2=10;
第三步,有10种拨号方式,所以m3=10;
第四步,有10种拨号方式,所以m4=10.
根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.
1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.
2.利用分步乘法计数原理解题的一般思路
(1)分步:将完成这件事的过程分成若干步;
(2)计数:求出每一步中的方法数;
(3)结论:将每一步中的方法数相乘得最终结果.
2.张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?
【解】 由题意知,张涛要完成理财目标应分步完成.
第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;
第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.
由分步乘法计数原理,得共有2×3=6种不同的理财方式.
两个计数原理的辨析
[探究问题]
1.某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?
【提示】 “完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成.而只选出“一荤一素”不能算“完成这件事”.
2.在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?
【提示】 要配成一荤一素一汤的套餐,需分步完成.只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配成套餐”这件事.
3.在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类加法计数原理和分步乘法计数原理求解吗?你能说明分类加法计数原理与分步乘法计数原理的主要区别吗?
【提示】 5种素菜分别记为A,B,C,D,E.3种汤分别记为a,b,c.
利用分类加法计数原理求解:
以选用5种不同的素菜分类:
选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法.故由分类加法计数原理,配成“一素一汤”的套餐共有3+3+3+3+3=15(种)不同的套餐.
利用分步乘法计数原理求解:
第一步:从5种素菜中,任选一种共5种不同的选法;
第二步:从3种汤中,任选一种共3种不同的选法.
由分步乘法计数原理,配成“一素一汤”的套餐共有5×3=15(种)不同套餐.
两个计数原理的主要区别在于分类加法计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步乘法计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事.
【例3】 有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?
【精彩点拨】 从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成.即解答本题可“先分类,后分步”.
【解】 第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4种方法;
第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;
第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;
第4类,选乙、丙、丁3人,同样也只有1种方法.
根据分类加法计数原理,共有4+2+1+1=8种选派方法.
1.能用分步乘法计数原理解决的问题具有如下特点:
(1)完成一件事需要经过n个步骤,缺一不可;
(2)完成每一步有若干种方法;
(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.
2.利用分步乘法计数原理应注意:
(1)要按事件发生的过程合理分步,即分步是有先后顺序的.
(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉.
(3)若完成某件事情需n步,则必须依次完成这n个步骤后,这件事情才算完成.
3.一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡.
(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?
(2)某人手机是双卡双待机,想得到一张移动卡和一张联通卡供自己使用,问一共有多少种不同的取法?
【解】 (1)第一类:从第一个袋子取一张移动卡,共有10种取法;
第二类:从第二个袋子取一张联通卡,共有12种取法.
根据分类加法计数原理,共有10+12=22种取法.
(2)第一步,从第一个袋子取一张移动卡,共有10种取法;
第二步,从第二个袋子取一张联通卡,共有12种取法.根据分步乘法计数原理,共有10×12=120种取法.
1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为(  )
A.7    B.12    C.64    D.81
【解析】 先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B.
【答案】 B
2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为(  )
A.1+1+1=3 B.3+4+2=9
C.3×4×2=24 D.以上都不对
【解析】 分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.
【答案】 B
3.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.
【解析】 产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.
【答案】 20 10
4.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.
【解析】 经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.
【答案】 12
5.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.
(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?
(2)若小明与爸爸分别就坐,有多少种坐法?
【解】 (1)小明爸爸选凳子可以分两类:
第一类:选东面的空闲凳子,有8种坐法;
第二类:选西面的空闲凳子,有6种坐法.
根据分类加法计数原理,小明爸爸共有8+6=14(种)坐法.
(2)小明与爸爸分别就坐,可以分两步完成:
第一步,小明先就坐,从东西面共8+6=14(个)凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)
第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.
由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182(种)坐法.
课件44张PPT。第一章 计数原理1.1 基本计数原理
第1课时 基本计数原理点击右图进入…Thank you for watching !第2课时 基本计数原理的应用
学习目标:1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)
教材整理 分类加法计数原理与分步乘法计数
原理的联系与区别
阅读教材P4~P5,完成下列问题.
分类加法计数原理和分步乘法计数原理的联系与区别
分类加法计数原理
分步乘法计数原理
联系
两个原理回答的都是关于完成一件事情的不同方法的种数的问题
区别一
完成一件事共有n类办法,关键词是“分类”
完成一件事共分n个步骤,关键词是“分步”
区别二
每类办法都能完成这件事
任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有每个步骤都完成了,才能完成这件事
区别三
各类办法都是互斥的、并列的、独立的
各步之间是相互关联的、互相依存的
1.由1,2,3,4组成没有重复数字的三位数的个数为________.
【解析】 由题意知可以组成没有重复数字的三位数的个数为4×3×2=24.
【答案】 24
2.(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4)展开后共有________项.
【解析】 该展开式中每一项的因式分别来自a1+a2+a3,b1+b2+b3,c1+c2+c3+c4中的各一项.由a1,a2,a3中取一项共3种取法,从b1,b2,b3中取一项有3种不同取法,从c1,c2,c3,c4中任取一项共4种不同的取法.由分步乘法计数原理知,该展开式共3×3×4=36(项).
【答案】 36
3.5名班委进行分工,其中A不适合当班长,B只适合当学习委员,则不同的分工方案种数为________.
【解析】 根据题意,B只适合当学习委员,有1种情况,A不适合当班长,也不能当学习委员,有3种安排方法,剩余的3人担任剩余的工作,有3×2×1=6种情况,由分步乘法计数原理,可得共有1×3×6=18种分工方案.
【答案】 18
4.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有________个.
【解析】 分三步完成,第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.
【答案】 18
抽取(分配)问题
【例1】 (1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有(  )
A.16种   B.18种   C.37种   D.48种
(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有________种.
【精彩点拨】 (1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解.
(2)先让一人去抽,然后再让被抽到贺卡所写人去抽.
【解】 (1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.
(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有3×3×1×1=9(种).
【答案】 (1)C (2)9
求解抽取(分配)问题的方法
1.当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.
2.当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.
1.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?
【解】 法一:(以小球为研究对象)分三步来完成:
第一步:放第一个小球有5种选择;
第二步:放第二个小球有4种选择;
第三步:放第三个小球有3种选择.
根据分步乘法计数原理得:
共有方法数N=5×4×3=60(种).
法二:(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:
第一类:空盒子标号为(1,2):选法有3×2×1=6(种);
第二类:空盒子标号为(1,3):选法有3×2×1=6(种);
第三类:空盒子标号为(1,4):选法有3×2×1=6(种);
分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.
根据分类加法计数原理得,共有方法数N=6+6+…+6=60(种).
组数问题
【例2】 用0,1,2,3,4,5可以组成多少个无重复数字的:
(1)银行存折的四位密码?
(2)四位整数?
(3)比2 000大的四位偶数?
【精彩点拨】 (1)用分步乘法计数原理求解(1)问;(2)0不能作首位,优先排首位,用分步乘法计数原理求解;(3)可以按个位是0,2,4分三类,也可以按首位是2,3,4,5分四类解决,也可以用间接法求解.
【解】 (1)分步解决.
第一步:选取左边第一个位置上的数字,有6种选取方法;
第二步:选取左边第二个位置上的数字,有5种选取方法;
第三步:选取左边第三个位置上的数字,有4种选取方法;
第四步:选取左边第四个位置上的数字,有3种选取方法.
由分步乘法计数原理知,可组成不同的四位密码共有
6×5×4×3=360(个).
(2)分步解决.
第一步:首位数字有5种选取方法;
第二步:百位数字有5种选取方法;
第三步:十位数字有4种选取方法;
第四步:个位数字有3种选取方法.
由分步乘法计数原理知,可组成四位整数有
5×5×4×3=300(个).
(3)法一:按末位是0,2,4分为三类:
第一类:末位是0的有4×4×3=48个;
第二类:末位是2的有3×4×3=36个;
第三类:末位是4的有3×4×3=36个.
则由分类加法计数原理有N=48+36+36=120(个).
法二:按千位是2,3,4,5分四类:
第一类:千位是2的有2×4×3=24(个);
第二类:千位是3的有3×4×3=36(个);
第三类:千位是4的有2×4×3=24(个);
第四类:千位是5的有3×4×3=36(个).
则由分类加法计数原理有N=24+36+24+36=120(个).
法三:间接法.
用0,1,2,3,4,5可以组成的无重复数字的四位偶数分两类:
第一类:末位是0的有5×4×3=60(个);
第二类:末位是2或4的有2×4×4×3=96(个).
共有60+96=156(个).
其中比2 000小的有:千位是1的共有3×4×3=36(个),
所以符合条件的四位偶数共有156-36=120(个).
1.对于组数问题,一般按特殊位置(一般是末位和首位)由谁占领分类,分类中再按特殊位置(或者特殊元素)优先的方法分步完成;如果正面分类较多,可采用间接法从反面求解.
2.解决组数问题,应特别注意其限制条件,有些条件是隐藏的,要善于挖掘.排数时,要注意特殊元素、特殊位置优先的原则.
2.由0,1,2,3这四个数字,可组成多少个:
(1)无重复数字的三位数?
(2)可以有重复数字的三位数?
【解】 (1)0不能做百位数字,所以百位数字有3种选择,十位数字有3种选择,个位数字有2种选择,所以无重复数字的三位数共有3×3×2=18(个).
(2)百位数字有3种选择,十位数字有4种选择,个位数字也有4种选择.
由分步乘法计数原理知,可以有重复数字的三位数共有3×4×4=48(个).
涂色问题
[探究问题]
1.用3种不同颜色填涂图中A,B,C,D四个区
A
B
C
D
域,且使相邻区域不同色,若按从左到右依次涂色,有多少种不同的涂色方案?
【提示】 涂A区有3种涂法,B,C,D区域各有2种不同的涂法,由分步乘法计数原理将A,B,C,D四个区域涂色共有3×2×2×2=24(种)不同方案.
2.在探究1中,若恰好用3种不同颜色涂A,B,C,D四个区域,那么哪些区域必同色?把四个区域涂色,共有多少种不同的涂色方案?
【提示】 恰用3种不同颜色涂四个区域,则A,C区域,或A,D区域,或B,D区域必同色.由分类加法计数原理可得恰用3种不同颜色涂四个区域共3×2×1+3×2×1+3×2×1=18(种)不同的方案.
3.在探究1中,若恰好用2种不同颜色涂完四个区域,则哪些区域必同色?共有多少种不同的涂色方案?
【提示】 若恰好用2种不同颜色涂四个区域,则A,C区域必同色,且B,D区域必同色.先从3种不同颜色中任取两种颜色,共3种不同的取法,然后用所取的2种颜色涂四个区域共2种不同的涂法.由分步乘法计数原理可得恰好用2种不同颜色涂四个区域共有3×2=6(种)不同的涂色方案.
【例3】 将红、黄、绿、黑四种不同的颜色涂在如图所示的图中,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?
【精彩点拨】 给图中区域标上记号A,B,C,D,E,则A区域有4种不同的涂色方法,B区域有3种,C区域有2种,D区域有2种,但E区域的涂色取决于B与D涂的颜色,如果B与D颜色相同有2种,如果不相同,那么只有1种.因此应先分类后分步.
【解】 法一:给图中区域标上记号A,B,C,D,E,如图所示.
①当B与D同色时,有4×3×2×1×2=48种.
②当B与D不同色时,有4×3×2×1×1=24种.
故共有48+24=72种不同的涂色方法.
法二:按涂色时所用颜色种数多少分类:
第一类,用4种颜色:此时B,D区域或A,E区域同色,则共有2×4×3×2×1=48种不同涂法.
第二类,用3种颜色:此时B,D同色,A,E同色,先从4种颜色中取3种,再涂色,共4×3×2×1=24种不同涂法.
由分类加法计数原理共48+24=72种不同涂法.
求解涂色?种植?问题一般是直接利用两个计数原理求解,常用方法有:
?1?按区域的不同以区域为主分步计数,用分步乘法计数原理分析;
?2?以颜色?种植作物?为主分类讨论,适用于“区域、点、线段”问题,用分类加法计数原理分析;
?3?对于涂色问题将空间问题平面化,转化为平面区域涂色问题.
3.如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成的,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.
【解析】 先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,由分步乘法计数原理,共有3×2×1×2=12种不同的涂法.
【答案】 12
1.已知x∈{1,2,3,4},y∈{5,6,7,8},则xy可表示不同值的个数为(  )
A.2 B.4
C.8 D.15
【解析】 x的取值共有4个,y的取值也有4个,则xy共有4×4=16个积,但是由于3×8=4×6,所以xy共有16-1=15(个)不同值,故选D.
【答案】 D
2.某年级要从3名男生,2名女生中选派3人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有(  )
A.6种 B.7种
C.8种 D.9种
【解析】 可按女生人数分类:若选派一名女生,有2×3=6种;若选派2名女生,则有3种.由分类加法计数原理,共有9种不同的选派方法.
【答案】 D
3.3名学生报名参加篮球、足球、排球、计算机课外兴趣小组,每人选报一门,则不同的报名方案有________种.
【解析】 每名同学都有4种不同的报名方案,共有4×4×4=64种不同的报名方案.
【答案】 64
4.圆周上有2n个等分点(n大于2),任取3点可得一个三角形,恰为直角三角形的个数为________.
【解析】 先在圆周上找一点,因为有2n个等分点,所以应有n条直径,不过该点的直径应有n-1条,这n-1条直径都可以与该点形成直角三角形,一个点可以形成n-1个直角三角形,而这样的点有2n个,所以一共有2n(n-1)个符合题意的直角三角形.
【答案】 2n(n-1)
5.用6种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.问:该板报有多少种书写方案?
【解】 第一步,选英语角用的彩色粉笔,有6种不同的选法;第二步,选语文学苑用的彩色粉笔,不能与英语角用的颜色相同,有5种不同的选法;第三步,选理综视界用的彩色粉笔,与英语角和语文学苑用的颜色都不能相同,有4种不同的选法;第四步,选数学天地用的彩色粉笔,只需与理综视界的颜色不同即可,有5种不同的选法,共有6×5×4×5=600种不同的书写方案.
课件44张PPT。第一章 计数原理1.1 基本计数原理
第2课时 基本计数原理的应用点击右图进入…Thank you for watching !课时分层作业(一) 基本计数原理
(建议用时:45分钟)
[基础达标练]
一、选择题
1.如图所示为一个电路图,从左到右可通电的线路共有(  )
A.6条   B.5条   C.9条   D.4条
【解析】 从左到右通电线路可分为两类:从上面有3条;从下面有2条.由分类加法计数原理知,从左到右通电的线路共有3+2=5条.
【答案】 B
2.有5列火车停在某车站并排的5条轨道上,若火车A不能停在第1道上,则5列火车的停车方法共有(  )
A.96种 B.24种 C.120种 D.12种
【解析】 先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.
【答案】 A
3.将5封信投入3个邮筒,不同的投法共有(  )
A.53种 B.35种
C.8种 D.15种
【解析】 每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.
【答案】 B
4.如果x,y∈N,且1≤x≤3,x+y<7,则满足条件的不同的有序自然数对的个数是(  )
A.15 B.12
C.5 D.4
【解析】 利用分类加法计数原理.
当x=1时,y=0,1,2,3,4,5,有6个;当x=2时,y=0,1,2,3,4,有5个;当x=3时,y=0,1,2,3,有4个.据分类加法计数原理可得,共有6+5+4=15个.
【答案】 A
5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A,B的值,则形成的不同直线有(  )
A.18条 B.20条
C.25条 D.10条
【解析】 第一步,取A的值,有5种取法;第二步,取B的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.
【答案】 A
二、填空题
6.椭圆+=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.
【解析】 因为焦点在y轴上,所以0【答案】 20
7.某班2019年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.
【解析】 将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).
【答案】 42
8.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________.
【解析】 依题意,首先找出B到A的路线,一共有4条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为6.由分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.
【答案】 19
三、解答题
9.有不同的红球8个,不同的白球7个.
(1)从中任意取出一个球,有多少种不同的取法?
(2)从中任意取出两个不同颜色的球,有多少种不同的取法?
【解】 (1)由分类加法计数原理,从中任取一个球共有8+7=15(种).
(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).
10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.
(1)从中任选1人去献血,有多少种不同的选法;
(2)从四种血型的人中各选1人去献血,有多少种不同的选法?
【解】 从O型血的人中选1人有28种不同的选法;
从A型血的人中选1人有7种不同的选法;
从B型血的人中选1人有9种不同的选法;
从AB型血的人中选1人有3种不同的选法.
(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理,有28+7+9+3=47种不同的选法.
(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理,有28×7×9×3=5 292种不同的选法.
[能力提升练]
1.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有(  )
A.180种    B.360种
C.720种 D.960种
【解析】 分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.
【答案】 D
2.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.
【解析】 若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.
【答案】 22
3.如图所示,(1)该电路从A到B共有多少条不同线路可以通电?(2)合上任意两只开关可以接通电路,有多少种不同的方法?
【解】 (1)先“分类”再“分步”.从总体上看由A到B的通电线路可分三类,第一类,可以通电的不同线路有2×1=2(条);第二类,有1条线路可以通电;第三类,可以通电的不同线路有2×2=4(条).
根据分类加法计数原理,可以通电的不同线路共有2+1+4=7(条).
(2)分两类:
第一类,中间线路的开关不合上,接通电路的不同方法有2×1+2×2=6(种);
第二类,中间线路的开关合上,有7种不同的方法.因此接通电路的不同方法共有6+7=13(种).
4.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),
(1)P可以表示平面上的多少个不同点?
(2)P可以表示平面上的多少个第二象限的点?
(3)P可以表示多少个不在直线y=x上的点?
【解】 (1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P可以表示平面上的6×6=36(个)不同点.
(2)根据条件需满足a<0,b>0.
完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P可以表示平面上的3×2=6(个)第二象限的点.
(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.
课时分层作业(二) 基本计数原理的应用
(建议用时:45分钟)
[基础达标练]
一、选择题
1.5名同学去听同时进行的4个课外知识讲座,每个同学可自由选择,且必须选择一个知识讲座,则不同的选择种数是(  )
A.54  B.45
C.5×4×3×2 D.5×4
【解析】 5名同学每人都选一个课外知识讲座,则每人都有4种选择,由分步乘法计数原理知共有4×4×4×4×4=45种选择.
【答案】 B
2.已知集合M={1,-2,3},N={-4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是(  )
A.18 B.17
C.16 D.10
【解析】 分两类.
第一类:M中的元素作横坐标,N中的元素作纵坐标,则在第一、二象限内的点有3×3=9(个);
第二类:N中的元素作横坐标,M中的元素作纵坐标,则在第一、二象限内的点有4×2=8(个).
由分类加法计数原理,共有9+8=17(个)点在第一、二象限.
【答案】 B
3.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人写的贺年卡,则四张贺年卡不同的分配方式有(  )
A.12种 B.9种
C.8种 D.6种
【解析】 设四张贺卡分别记为A,B,C, D.由题意,某人(不妨设A卡的供卡人)取卡的情况有3种,据此将卡的分配方式分为三类,对于每一类,其他人依次取卡分步进行,为了避免重复或遗漏,我们用“树状图”表示如下:
所以共有9种不同的分配方式,故选 B.
【答案】 B
4.将1,2,3,…,9这9个数字填在如图所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法为(  )
A.6种 B.12种
C.18种 D.24种
【解析】 因为每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填好后与之相邻的空格可填6,7,8任一个;余下两个数字按从小到大只有一种方法.共有2×3=6种结果,故选A.
【答案】 A
5.体育老师把9个相同的足球放入编号为1,2,3的三个箱子中,要求每个箱子放球的个数不少于其编号,则不同的放球方法有(  )
A.8种 B.10种
C.12种 D.16种
【解析】 首先在三个箱子中放入个数与编号相同的球,
这样剩下三个足球,这三个足球可以随意放置,
第一种方法,可以在每一个箱子中放一个,有1种结果;
第二种方法,可以把球分成两份,1和2,这两份在三个位置,有3×2=6种结果;第三种方法,可以把三个球都放到一个箱子中,有3种结果.
综上可知共有1+6+3=10种结果.
【答案】 B
二、填空题
6.小张正在玩一款种菜的游戏,他计划从仓库里的玉米、土豆、茄子、辣椒、胡萝卜这5种种子中选出4种分别种植在四块不同的空地上(一块空地只能种植一种作物),若小张已决定在第一块空地上种茄子或辣椒,则不同的种植方案共有________种.
【解析】 当第一块地种茄子时,有4×3×2=24种不同的种法;当第一块地种辣椒时,有4×3×2=24种不同的种法,故共有48种不同的种植方案.
【答案】 48
7.从集合{0,1,2,3,5,7,11}中任取3个不同元素分别作为直线方程Ax+By+C=0中的A,B,C,所得直线经过坐标原点的有________条.
【解析】 因为过原点的直线常数项为0,所以C=0,从集合中的6个非零元素中任取一个作为系数A,有6种方法,再从其余的5个元素中任取一个作为系数B,有5种方法,由分步乘法计数原理得,适合条件的直线共有1×6×5=30(条).
【答案】 30
8.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种.
【解析】 分三类:若甲在周一,则乙丙有4×3=12种排法;
若甲在周二,则乙丙有3×2=6种排法;
若甲在周三,则乙丙有2×1=2种排法.
所以不同的安排方法共有12+6+2=20种.
【答案】 20
三、解答题
9.如图所示,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,不同的涂色方法共有多少种?(用数字作答)
【解】 不妨将图中的4个格子依次编号为①②③④,当①③同色时,有6×5×1×5=150种方法;当①③异色时,有6×5×4×4=480种方法.所以共有150+480=630种方法.
10.用数字1,2,3,4,5,6组成无重复数字的三位数,然后由小到大排成一个数列.
(1)求这个数列的项数;
(2)求这个数列中的第89项的值.
【解】 (1)完成这件事需要分别确定百位、十位和个位数,可以先确定百位,再确定十位,最后确定个位,因此要分步相乘.
第一步:确定百位数,有6种方法.
第二步:确定十位数,有5种方法.
第三步:确定个位数,有4种方法.
根据分步乘法计数原理,共有
N=6×5×4=120个三位数.
所以这个数列的项数为120.
(2)这个数列中,百位是1,2,3,4的共有4×5×4=80个,
百位是5的三位数中,十位是1或2的有4+4=8个,
故第88项为526,故从小到大第89项为531.
[能力提升练]
1.如图所示,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为(  )
A.96 B.84
C.60 D.48
【解析】 可依次种A,B,C,D四块,当C与A种同一种花时,有4×3×1×3=36种种法;当C与A所种花不同时,有4×3×2×2=48种种法.
由分类加法计数原理,不同的种法种数为36+48=84.
【答案】 B
2.甲、乙两人进行乒乓球比赛,采取五局三胜制,即先赢三局者获胜,决出胜负为止,则所有可能出现的情形(两人输赢局数的不同视为不同情形)共有(  )
A.10种 B.15种
C.20种 D.30种
【解析】 由题意知,比赛局数最少为3局,至多为5局.当比赛局数为3局时,情形为甲或乙连赢3局,共2种;当比赛局数为4局时,若甲赢,则前3局中甲赢2局,最后一局甲赢,共有3种情形;同理,若乙赢,则也有3种情形,所以共有6种情形;当比赛局数为5局时,前4局,甲、乙双方各赢2局,最后一局胜出的人赢,若甲前4局赢2局,共有赢取第1、2局,1、3局,1、4局,2、3局,2、4局,3、4局六种情形,所以比赛局数为5局时共有2×6=12(种),综上可知,共有2+6+12=20(种).故选C.
【答案】 C
3.在一次运动会选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.
【解析】 分两步安排这8名运动员.
第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排,所以安排方式有4×3×2=24种.
第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120种.
所以安排这8人的方式有24×120=2 880种.
【答案】 2 880
4.给出一个正五棱柱,用3种颜色给其10个顶点染色,要求各侧棱的两个端点不同色,有几种染色方案?
【解】 分两步,先给上底面的5个顶点染色,每个顶点都有3种方法,共有35种方法,再给下底面的5个顶点染色,因为各侧棱两个端点不同色,所以每个顶点有2种方法,共有25种方法,根据分步乘法计数原理,共有35·25=7 776(种)染色方案.