人教B版数学选修2-3(课件45+教案+练习)1.3.2 杨辉三角

文档属性

名称 人教B版数学选修2-3(课件45+教案+练习)1.3.2 杨辉三角
格式 zip
文件大小 4.3MB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2019-09-28 22:25:43

文档简介

1.3.2 杨辉三角
学习目标:1.了解杨辉三角,并探索其中的规律.(难点)2.掌握二项式系数的性质及其应用.(重点)3.掌握“赋值法”并会灵活运用.
教材整理1 杨辉三角
阅读教材P29,完成下列问题.
杨辉三角的特点
(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.
(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C=C+C.
1.如图是一个类似杨辉三角的图形,则第n行的首尾两个数均为________.
1
3 3
5 6 5
7 11 11 7
9 18 22 18 9
……
【解析】 由1,3,5,7,9,…可知它们成等差数列,所以an=2n-1.
【答案】 2n-1
2.如图,由二项式系数构成的杨辉三角中,第________行从左到右第14与第15个数之比为2∶3.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
……
【解析】 设第n行从左到右第14与第15个数之比为2∶3,
则3C=2C,
即=,
解得n=34.
【答案】 34
教材整理2 二项式系数的性质
阅读教材P29后半部分,完成下列问题.
1.每一行的两端都是1,其余每个数都等于它“肩上”两个数的和.
2.每一行中,与首末两端“等距离”的两个数相等.
3.如果二项式的幂指数n是偶数,那么其展开式中间一项T的二项式系数最大;如果n是奇数,那么其展开式中间两项T与T的二项式系数相等且最大.
4.二项展开式的二项式系数的和等于2n.
1.已知(a+b)n展开式中只有第5项的二项式系数最大,则n等于________.
【解析】 因为只有第5项的二项式系数最大,所以+1=5,所以n=8.
【答案】 8
2.已知(ax+1)n的展开式中,二项式系数和为32,则n等于________.
【解析】 二项式系数之和为C+C+…+C=2n=32,所以n=5.
【答案】 5
3.(2x-1)10展开式中x的奇次幂项的系数之和为________.
【解析】 因为(2x-1)10=a0+a1x+a2x2+…+a10x10,
令x=1,得a0+a1+a2+…+a10=1,
再令x=-1,得
310=a0-a1+a2-a3+…+a10,
两式相减,可得a1+a3+…+a9=.
【答案】 
与“杨辉三角”有关的问题
【例1】 如图所示,在“杨辉三角”中斜线AB的上方,从1开始箭头所示的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n项和为Sn,求S19的值.
【精彩点拨】 由图知,数列中的首项是C,第2项是C,第3项是C,第4项是C,…,第17项是C,第18项是C,第19项是C.
【解】 S19=(C+C)+(C+C)+(C+C)+…+(C+C)+C=(C+C+C+…+C)+(C+C+…+C+C)=(2+3+4+…+10)+C=+220=274.
“杨辉三角”问题解决的一般方法
观察—分析;试验—猜想;结论—证明,要得到杨辉三角中蕴含的诸多规律,取决于我们的观察能力,观察能力有:横看、竖看、斜看、连续看、隔行看,从多角度观察.如表所示:
1.如图所示,满足如下条件:
①第n行首尾两数均为n;
②表中的递推关系类似“杨辉三角”.
则第10行的第2个数是________,第n行的第2个数是________.
【解析】 由图表可知第10行的第2个数为:
(1+2+3+…+9)+1=46,
第n行的第2个数为:
[1+2+3+…+(n-1)]+1=+1=.
【答案】 46 
求展开式的系数和
【例2】 设(1-2x)2 019=a0+a1x+a2x2+…+a2 019·x2 019(x∈R).
(1)求a0+a1+a2+…+a2 019的值;
(2)求a1+a3+a5+…+a2 019的值;
(3)求|a0|+|a1|+|a2|+…+|a2 019|的值.
【精彩点拨】 先观察所求式子与展开式各项的特点,利用赋值法求解.
【解】 (1)令x=1,得
a0+a1+a2+…+a2 019=(-1)2 019=-1.①
(2)令x=-1,得a0-a1+a2-…-a2 019=32 019.②
①-②得
2(a1+a3+…+a2 019)=-1-32 019,
∴a1+a3+a5+…+a2 019=.
(3)∵Tr+1=C(-2x)r=(-1)r·C·(2x)r,
∴a2k-1<0(k∈N+),a2k>0(k∈N).
∴|a0|+|a1|+|a2|+|a3|+…+|a2 019|
=a0-a1+a2-a3+…-a2 019=32 019.
1.解决二项式系数和问题思维流程
2.“赋值法”是解决二项展开式中项的系数常用的方法,根据题目要求,灵活赋给字母不同值.一般地,要使展开式中项的关系变为系数的关系,令x=0可得常数项,令x=1可得所有项系数之和,令x=-1可得偶次项系数之和与奇次项系数之和的差.
2.若(3x-1)7=a7x7+a6x6+…+a1x+a0,求:
(1)a1+a2+…+a7;
(2)a1+a3+a5+a7;
(3)a0+a2+a4+a6.
【解】 (1)令x=0,则a0=-1;
令x=1,得a7+a6+…+a1+a0=27=128,①
所以a1+a2+…+a7=129.
(2)令x=-1,得-a7+a6-a5+a4-a3+a2-a1+a0=(-4)7,②
由①-②得2(a1+a3+a5+a7)=128-(-4)7,
∴a1+a3+a5+a7=8 256.
(3)由①+②得2(a0+a2+a4+a6)=128+(-4)7,
∴a0+a2+a4+a6=-8 128.
二项式系数性质的应用
[探究问题]
1.根据杨辉三角的特点,在杨辉三角同一行中与两个1等距离的项的系数相等,你可以得到二项式系数的什么性质?
【提示】 对称性,因为C=C.
2.计算,并说明你得到的结论.
【提示】 =.
当k<时,>1,说明二项式系数逐渐增大;
同理,当k>时,二项式系数逐渐减小.
3.二项式系数何时取得最大值?
【提示】 当n是偶数时,中间的一项取得最大值;当n是奇数时,中间的两项C,C相等,且同时取得最大值.
【例3】 已知f(x)=(+3x2)n展开式中各项的系数和比各项的二项式系数和大992.
(1)求展开式中二项式系数最大的项;
(2)求展开式中系数最大的项.
【精彩点拨】 求二项式系数最大的项,利用性质知展开式中中间项(或中间两项)是二项式系数最大的项;求展开式中系数最大的项,必须将x,y的系数均考虑进去,包括“+”“-”号.
【解】 令x=1,则二项式各项系数的和为f(1)=(1+3)n=4n,又展开式中各项的二项式系数之和为2n,由题意知,4n-2n=992.
∴(2n)2-2n-992=0,
∴(2n+31)(2n-32)=0,
∴2n=-31(舍去)或2n=32,∴n=5.
(1)由于n=5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是
T3=C(x)3(3x2)2=90x6,
T4=C(x)2(3x2)3=270x.
(2)展开式的通项公式为Tr+1=C3r·x(5+2r).
假设Tr+1项系数最大,
则有


∴≤r≤,∵r∈N,∴r=4.
∴展开式中系数最大的项为T5=Cx(3x2)4=405x.
1.求二项式系数最大的项,根据二项式系数的性质,当n为奇数时,中间两项的二项式系数最大;当n为偶数时,中间一项的二项式系数最大.
2.求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组,解不等式的方法求得.
3.已知(a2+1)n展开式中的各项系数之和等于5的展开式的常数项,而(a2+1)n的展开式的系数最大的项等于54,求a的值.
【解】 由5,得
Tr+1=C5-rr=5-r·C·x,
令Tr+1为常数项,则20-5r=0,
所以r=4,常数项T5=C×=16.
又(a2+1)n展开式中的各项系数之和等于2n,
由此得到2n=16,n=4.
所以(a2+1)4展开式中系数最大项是中间项T3=Ca4=54,所以a=±.
1.(1+x)2n+1的展开式中,二项式系数最大的项所在项数是(  )
A.n,n+1 B.n-1,n
C.n+1,n+2 D.n+2,n+3
【解析】 该展开式共2n+2项,中间两项为第n+1项与第n+2项,所以第n+1项与第n+2项为二项式系数最大的项.
【答案】 C
2.已知C+2C+22C+…+2nC=729,则C+C+C的值等于(  )
A.64   B.32 C.63   D.31
【解析】 C+2C+…+2nC=(1+2)n=3n=729,
∴n=6,∴C+C+C=32.
【答案】 B
3.若(x+3y)n的展开式中各项系数的和等于(7a+b)10的展开式中二项式系数的和,则n的值为________.
【解析】 (7a+b)10的展开式中二项式系数的和为C+C+…+C=210,令(x+3y)n中x=y=1,则由题设知,4n=210,即22n=210,解得n=5.
【答案】 5
4.已知(a-x)5=a0+a1x+a2x2+…+a5x5,若a2=80,则a0+a1+a2+…+a5=________.
【解析】 (a-x)5展开式的通项为Tr+1=(-1)rCa5-rxr,
令r=2,得a2=(-1)2Ca3=80,解得a=2,即(2-x)5=a0+a1x+a2x2+…+a5x5,令x=1,得a0+a1+a2+…+a5=1.
【答案】 1
5.在8的展开式中,求:
(1)系数的绝对值最大的项;
(2)二项式系数最大的项;
(3)系数最大的项;
(4)系数最小的项.
【解】 Tr+1=C()8-rr=(-1)rC2rx.
(1)设第r+1项系数的绝对值最大,
则∴
解得5≤r≤6.
故系数绝对值最大的项是第6项和第7项.
(2)二项式系数最大的项为中间项,即为第5项.
所以T5=C·24·x=1 120x-6.
(3)由(1)知,展开式中的第6项和第7项系数的绝对值最大,而第6项的系数为负,第7项的系数为正.
则系数最大的项为T7=C·26·x-11=1 792x-11.
(4)系数最小的项为
T6=(-1)5C·25x=-1 792x.
课件45张PPT。第一章 计数原理1.3 二项式定理
1.3.2 杨辉三角点击右图进入…Thank you for watching !课时分层作业(八) 杨辉三角
(建议用时:45分钟)
[基础达标练]
一、选择题
1.在(a-b)20的二项展开式中,二项式系数与第6项的二项式系数相同的项是(  )
A.第15项  B.第16项
C.第17项 D.第18项
【解析】 第6项的二项式系数为C,又C=C,所以第16项符合条件.
【答案】 B
2.已知n的展开式的二项式系数之和为32,则展开式中含x项的系数是(  )
A.5 B.20
C.10 D.40
【解析】 根据题意,该二项式的展开式的二项式系数之和为32,
则有2n=32,可得n=5,
Tr+1=Cx2(5-r)·x-r=Cx10-3r,
令10-3r=1,解得r=3,
所以展开式中含x项的系数是C=10,故选C.
【答案】 C
3.设(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n,则a0+a2+a4+…+a2n等于(  )
A.2n B.
C.2n+1 D.
【解析】 令x=1,得3n=a0+a1+a2+…+a2n-1+a2n,①
令x=-1,得1=a0-a1+a2-…-a2n-1+a2n,②
①+②得3n+1=2(a0+a2+…+a2n),
∴a0+a2+…+a2n=.故选 D.
【答案】 D
4.已知(1+2x)8展开式的二项式系数的最大值为a,系数的最大值为b,则的值为(  )
A. B.
C. D.
【解析】 a=C=70,设b=C2r,则得5≤r≤6,所以b=C26=C26=7×28,所以=.故选A.
【答案】 A
5.在(x-)2 010的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于(  )
A.23 015 B.-23 014
C.23 014 D.-23 008
【解析】 因为S=,当x=时,S=-=-23 014.
【答案】 B
二、填空题
6.若(1-2x)2 016=a0+a1x+…+a2 016x2 016(x∈R),则++…+的值为________.
【解析】 令x=0,得a0=1.令x=,得a0+++…+=0,所以++…+=-1.
【答案】 -1
7.若n是正整数,则7n+7n-1C+7n-2C+…+7C除以9的余数是________.
【解析】 7n+7n-1C+7n-2C+…+7C=(7+1)n-C=8n-1=(9-1)n-1=C9n(-1)0+C9n-1(-1)1+…+C90(-1)n-1,∴n为偶数时,余数为0;当n为奇数时,余数为7.
【答案】 7或0
8.在“杨辉三角”中,每一个数都是它“肩上”两个数的和,它开头几行如图所示.那么,在“杨辉三角”中,第________行会出现三个相邻的数,其比为3∶4∶5.
【解析】 根据题意,设所求的行数为n,则存在正整数k,
使得连续三项C,C,C,有=且=.
化简得=,=,联立解得k=27,n=62.
故第62行会出现满足条件的三个相邻的数.
【答案】 62
三、解答题
9.已知(1+2x-x2)7=a0+a1x+a2x2+…+a13x13+a14x14.
(1)求a0+a1+a2+…+a14;
(2)求a1+a3+a5+…+a13.
【解】 (1)令x=1,
则a0+a1+a2+…+a14=27=128.①
(2)令x=-1,
则a0-a1+a2-a3+…-a13+a14=(-2)7=-128.②
①-②得2(a1+a3+…+a13)=256,
所以a1+a3+a5+…+a13=128.
10.已知n的展开式中前三项的二项式系数的和等于37.求展开式中二项式系数最大的项的系数.
【解】 由C+C+C=37,得1+n+n(n-1)=37,解得n=8.8的展开式共有9项,其中T5=C4(2x)4=x4,该项的二项式系数最大,系数为.
[能力提升练]
1.若(-x)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+…+a10)2-(a1+a3+…+a9)2=(  )
A.1   B.-1 C.2   D.-2
【解析】 令x=1,得a0+a1+a2+…+a10=(-1)10,
令x=-1,得a0-a1+a2-a3+…+a10=(+1)10,
故(a0+a2+…+a10)2-(a1+a3+…+a9)2
=(a0+a1+a2+…+a10)(a0-a1+a2-a3+…+a10)
=(-1)10(+1)10=1.
【答案】 A
2.把通项公式为an=2n-1(n∈N+)的数列{an}的各项排成如图所示的三角形数阵.记S(m,n)表示该数阵的第m行中从左到右的第n个数,则S(10,6)对应于数阵中的数是(  )
1
3 5
7 9 11
13 15 17 19
……
A.91 B.101
C.106 D.103
【解析】 设这个数阵每一行的第一个数组成数列{bn},则b1=1,bn-bn-1=2(n-1),∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2[(n-1)+(n-2)+…+1]+1=n2-n+1,
∴b10=102-10+1=91,S(10,6)=b10+2×(6-1)=101.
【答案】 B
3.若(x2+1)(x-3)9=a0+a1(x-2)+a2(x-2)2+a3(x-2)3+…+a11(x-2)11,则a1+a2+a3+…+a11的值为________.
【解析】 令x=2,得-5=a0,令x=3,得0=a0+a1+a2+a3+…+a11,所以a1+a2+a3+…+a11=-a0=5.
【答案】 5
4.已知f(x)=(1+x)m+(1+2x)n(m,n∈N+)的展开式中x的系数为11.
(1)求x2的系数取最小值时n的值;
(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.
【解】 (1)由已知C+2C=11,所以m+2n=11,
x2的系数为C+22C=+2n(n-1)=+(11-m)·=2+.
因为m∈N+,所以m=5时,x2的系数取得最小值22,此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,
所以f(x)=(1+x)5+(1+2x)3,
设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a3x3+a4x4+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
两式相减得2(a1+a3+a5)=60,
故展开式中x的奇次幂项的系数之和为30.