苏教版数学选修2-1(课件57+教案+练习)3.2.3 空间的角的计算

文档属性

名称 苏教版数学选修2-1(课件57+教案+练习)3.2.3 空间的角的计算
格式 zip
文件大小 3.9MB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2019-09-29 17:03:52

文档简介

3.2.3 空间的角的计算
学 习 目 标
核 心 素 养
1.理解空间三种角的概念,能用向量方法求线线、线面、面面的夹角.(重点、难点)
2.二面角的求法.(难点)
3.空间三种角的范围.(易错点)
1.通过求平面的法向量,培养数学运算素养.
2.借助空间角的求解,提升逻辑推理素养.
空间角的向量求法
(1)两条异面直线所成角的向量求法
若异面直线l1,l2的方向向量分别为a,b,l1,l2所成的角为θ,则cos θ=|cos〈a,b〉|.
(2)直线和平面所成角的向量求法
设直线l的方向向量为a,平面α的法向量为n,a与n的夹角为θ1,l与α所成的角为θ2,则sin θ2=|cos_θ1|=.
 
(1)       (2)
(3)二面角的向量求法
设二面角α-l-β的大小为θ,α,β的法向量分别为n1,n2,则|cos θ|=|cos〈n1,n2〉|=,θ取锐角还是钝角由图形确定.
思考:(1)直线与平面所成的角和直线的方向向量与平面的法向量所成的角有怎样的关系?
(2)二面角与二面角的两个半平面的法向量所成的角有怎样的关系?
[提示] (1)设n为平面α的一个法向量,a为直线a的方向向量,直线a与平面α所成的角为θ,则
θ=
(2)
条件
平面α,β的法向量分别为,,,所构成的二面角的大小为,〈u,υ〉=φ,
图形
关系
θ=φ
θ=π-φ
计算
cos θ=cos φ
cos θ=-cos φ
1.已知向量m,n分别是直线l与平面α的方向向量、法向量,若cos〈m,n〉=-,则l与α所成的角为(  )
A.30°    B.60°   
C.150°    D.120°
B [设l与α所成的角为θ,则sin θ=|cos〈m,n〉|=,∴θ=60°,应选B.]
2.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角为________.
30° [由题意得,直线l与平面α的法向量所在直线的夹角为60°,∴直线l与平面α所成的角为90°-60°=30°.]
3.长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AC与BC1所成角的余弦值为________.
 [如图建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),C1(1,1,3).
∴=(1,1,0),=(0,1,3),
cos〈,〉=
===.
综上,异面直线AC与BC1所成角的余弦值为.]
4.已知二面角α-l-β,α的法向量为n=(1,2,-1),β的法向量为m=(1,-3,1),若二面角α-l-β为锐角,则其余弦值为________.
 [cos〈n,m〉===-.
又因二面角为锐角,所以余弦值为.]
求两条异面直线所成的角
【例1】 如图,在三棱柱OAB-O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA=,求异面直线A1B与AO1所成角的余弦值的大小.
[解] 建立如图所示的空间直角坐标系,则O(0,0,0),O1(0,1,),A(,0,0),A1(,1,),B(0,2,0),
∴=(-,1,-),
=(,-1,-).
∴|cos〈,〉|=
==.
∴异面直线A1B与AO1所成角的余弦值为.
1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程,只需对相应向量进行运算即可.
2.由于两异面直线夹角θ的范围是,而两向量夹角α的范围是[0,π],故应有cos θ=|cos α|,求解时要特别注意.
1.已知四棱锥S-ABCD的底面是正方形且侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为(  )
A.    B.   
C.    D.
C [依题意,建立坐标系如图所示,设四棱锥S-ABCD的棱长为,
则A(0,-1,0),B(1,0,0),S(0,0,1),D(-1,0,0),
∴E点坐标为,
=,
=(-1,0,-1),
∴cos〈,〉==-,
故异面直线所成角的余弦值为.故选C.]
求直线与平面所成的角
【例2】 如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.
[思路探究] (1)线面平行的判定定理?MN∥平面PAB.
(2)利用空间向量计算平面PMN与AN方向向量的夹角?直线AN与平面PMN所成角的正弦值.
[解] (1)证明:由已知得AM=AD=2.
如图,取BP的中点T,连接AT,TN,由N为PC的中点知TN∥BC,TN=BC=2.
又AD∥BC,故TN綊AM,所以四边形AMNT为平行四边形,
于是MN∥AT.
因为AT?平面PAB,MN?平面PAB,
所以MN∥平面PAB.
(2)如图,取BC的中点E,连接AE.
由AB=AC得AE⊥BC,从而AE⊥AD,
且AE===.
以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.
由题意知P(0,0,4),M(0,2,0),C(,2,0),N,
=(0,2,-4),=,=.
设n=(x,y,z)为平面PMN的法向量,则
即
可取n=(0,2,1).
于是|cos〈n,〉|==.
所以直线AN与平面PMN所成角的正弦值为.
若直线l与平面α的夹角为θ,利用法向量计算θ的步骤如下:
2.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.
(1)求证:PD⊥平面PAB.
(2)求直线PB与平面PCD所成角的正弦值.
(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.
[解] (1)证明:因为平面PAD⊥平面ABCD,AB⊥AD,
所以AB⊥平面PAD.所以AB⊥PD.
又因为PA⊥PD,
所以PD⊥平面PAB.
(2)取AD的中点O,连接PO,CO.
因为PA=PD,所以PO⊥AD.
又因为PO?平面PAD,平面PAD⊥平面ABCD,
所以PO⊥平面ABCD.
因为CO?平面ABCD,所以PO⊥CO.
因为AC=CD,所以CO⊥AD.
如图,建立空间直角坐标系O-xyz.
由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).
设平面PCD的法向量为n=(x,y,z),则
即
令z=2,则x=1,y=-2.
所以n=(1,-2,2).
又=(1,1,-1),所以cos〈n,〉==-.
所以直线PB与平面PCD所成角的正弦值为.
(3)设M是棱PA上一点,
则存在λ∈[0,1]使得=λ.
因此点M(0,1-λ,λ),=(-1,-λ,λ).
因为BM?平面PCD,所以要使BM∥平面PCD当且仅当·n=0,即(-1,-λ,λ)·(1,-2,2)=0.
解得λ=.所以在棱PA上存在点M使得BM∥平面PCD,此时=.
求二面角
[探究问题]
1.建立空间直角坐标系时,如何寻找共点的两两垂直的三条直线?
提示:应充分利用题目给出的条件,如线面垂直,面面垂直,等腰三角形等,作出适当的辅助线然后证明它们两两垂直,再建系.
2.如何确定二面角与两个平面的法向量所成角的大小关系?
提示:法一:观察法,通过观察图形,观察二面角是大于,还是小于.
法二:在二面角所含的区域内取一点P,平移两个平面的法向量,使它们的起点为P,然后观察法向量的方向,若两个法向量同时指向平面内侧或同时指向外侧,则二面角与法向量的夹角互补,若两个法向量方向相反,则二面角与法向量的夹角相等.
【例3】 如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.
[思路探究] (1)先证线面垂直,再证面面垂直;
(2)建立空间直角坐标系,利用向量法求解.
[解] (1)证明:由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.
因为AB∥CD,所以AB⊥PD.
又AP∩DP=P,所以AB⊥平面PAD.
因为AB?平面PAB,所以平面PAB⊥平面PAD.
(2)在平面PAD内作PF⊥AD,垂足为点F.
由(1)可知,AB⊥平面PAD,故AB⊥PF,可得PF⊥平面ABCD.
以F为坐标原点,的方向为x轴正方向,||为单位长度建立如图所示的空间直角坐标系F-xyz.
由(1)及已知可得A,P,B,C,
所以=,=(,0,0),
=,=(0,1,0).
设n=(x1,y1,z1)是平面PCB的一个法向量,则
即
所以可取n=(0,-1,-).
设m=(x2,y2,z2)是平面PAB的一个法向量,则
即
所以可取m=(1,0,1),则cos〈n,m〉===-.
所以二面角A-PB-C的余弦值为-.
利用向量法求二面角的步骤
1.建立空间直角坐标系;
2.分别求出二面角的两个半平面所在平面的法向量;
3.求两个法向量的夹角;
4.判断所求二面角的平面角是锐角还是钝角;
5.确定二面角的大小.
3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.
(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;
(2)当AB=3,AD=2时,求二面角E-AG-C的大小.
[解] (1)因为AP⊥BE,AB⊥BE,AB,AP?平面ABP,AB∩AP=A,所以BE⊥平面ABP.
又BP?平面ABP,所以BE⊥BP.
又∠EBC=120°,所以∠CBP=30°.
(2)以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.
由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),
故=(2,0,-3),=(1,,0),=(2,0,3).
设m=(x1,y1,z1)是平面AEG的一个法向量,
由可得
取z1=2,可得平面AEG的一个法向量m=(3,-,2).
设n=(x2,y2,z2)是平面ACG的一个法向量,
由可得
取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).
所以cos〈m,n〉==.
故所求的角为60°.
向量法求角
(1)两条异面直线所成的角θ可以借助这两条直线的方向向量的夹角φ求得,即cos θ=|cos φ|.
(2)直线与平面所成的角θ可以通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|或cos θ=sin φ.
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.
1.判断(正确的打“√”,错误的打“×”)
(1)两异面直线所成的角与两直线的方向向量所成的角相等.(  )
(2)若向量n1,n2分别为二面角的两半平面的法向量,则二面角的平面角的余弦值为cos〈n1,n2〉=.(  )
(3)直线的方向向量与平面的法向量所成的角就是直线与平面所成的角.(  )
(4)二面角的大小与其两个半平面的法向量的夹角相等或互补.(  )
[答案] (1)× (2)× (3)× (4)√
2.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦值为(  )
A.    B.   
C.    D.
B [设正方体的棱长为1,依题意,建立如图所示的坐标系,则A(1,0,0),B(1,1,0),C(0,1,0),D1(0,0,1),B1(1,1,1),
∴=(-1,0,1),=(-1,1,0),
设平面ACD的法向量为n=(x,y,z),
∴,令x=1,∴n=(1,1,1),
又∵=(0,0,1),∴BB1与平面ACD1所成角的正弦值为=.]
3.已知点A(1,0,0),B(0,2,0),C(0,0,3),则平面ABC与平面xOy所成锐二面角的余弦值为________.
 [=(-1,2,0),=(-1,0,3),设平面ABC的一个法向量n=(x,y,z),由n·=0,n·=0,得令x=2,则y=1,z=,∴n=.
平面xOy的一个法向量为=(0,0,3),cos〈n,〉===.]
4.如图,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.
[解] 以点B为原点,BA,BC,BE所在的直线分别为x,y,z轴,建立如图所示的空间直角坐标系,
则B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1),
∴=(0,2,1),=(1,-2,0),=(2,0,0).
设平面BDF的一个法向量为n=(2,a,b).
∵n⊥,n⊥,
∴即
解得a=1,b=-2,
∴n=(2,1,-2).
又设AB与平面BDF所成的角为θ,
则sin θ===,
即AB与平面BDF所成角的正弦值为.
课件57张PPT。第3章 空间向量与立体几何3.2 空间向量的应用
3.2.3 空间的角的计算23456789101112131415求两条异面直线所成的角 161718192021求直线与平面所成的角 22232425262728293031求二面角 32333435363738394041424344454647484950515253545556点击右图进入…Thank you for watching !课时分层作业(十五)
(建议用时:60分钟)
[基础达标练]
一、选择题
1.若异面直线l1的方向向量与l2的方向向量的夹角为150°,则l1与l2所成的角为(  )
A.30°   B.150°
C.30°或150° D.以上均不对
A [l1与l2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为.应选A.]
2.已知二面角α-l-β的两个半平面α与β的法向量分别为a,b,若〈a,b〉=,则二面角α-l-β的大小为(  )
A. B.
C.或 D.或
C [由于二面角的范围是[0,π],而二面角的两个半平面α与β的法向量都有两个方向,因此二面角α-l-β的大小为或,故选C.]
3.如图,空间正方体ABCD-A1B1C1D1中,M,N分别是CD,CC1的中点,则异面直线A1M与DN所成角的大小是(  )
A. B.
C. D.
D [以D为原点,DA,DC,DD1所在直线为坐标轴建系(图略),则=,=,
cos〈,〉==0.
∴〈,〉=.]
4.已知在正四面体A-BCD中,E为棱AD的中点,则CE与平面BCD的夹角的正弦值为(  )
A.    B.   
C.    D.
B [作AO⊥平面BCD于点O,则O是△BCD的中心,以O为坐标原点,直线OD为y轴,直线OA为z轴建立空间直角坐标系,如图所示.设AB=2,则O(0,0,0),A,C,E,∴=,
=,
∴cos〈,〉===.∴CE与平面BCD的夹角的正弦值为.]
5.如图所示,已知四棱锥P-ABCD中,底面ABCD是菱形,且PA⊥平面ABCD,PA=AD=AC,点F为PC的中点,则二面角C-BF-D的正切值为(  )
A. B.
C. D.
D [如图所示,设AC与BD交于点O,连接OF.以O为坐标原点,OB,OC,OF所在直线分别为x,y,z轴建立空间直角坐标系Oxyz.
设PA=AD=AC=1,则BD=,所以O(0,0,0),B,F,C,=,易知为平面BDF的一个法向量,由=,=,可得平面BCF的一个法向量为n=(1,,).所以cos〈n,〉=,sin〈n,〉=,所以tan〈n,〉=.故二面角C-BF-D的正切值为.]
二、填空题
6.若直线l的方向向量a=(-2,3,1),平面α的一个法向量n=(4,0,1),则直线l与平面α所成角的正弦值为________.
 [由题意,得直线l与平面α所成角的正弦值为==.]
7.已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则平面AEF与平面ABC所成的二面角的正切值等于________.
 [如图,建立空间直角坐标系.
设正方体的棱长为1,平面ABC的法向量为n1=(0,0,1),平面AEF的法向量为n2=(x,y,z).
所以A(1,0,0),E,F,
所以=,=,
则即
取x=1,则y=-1,z=3.故n2=(1,-1,3).
所以cos〈n1,n2〉==.
所以平面AEF与平面ABC所成的二面角的平面角α满足cos α=,sin α=,所以tan α=.]
8.如图,正三角形ABC与正三角形BCD所在的平面互相垂直,则直线CD与平面ABD所成角的正弦值为________.
 [取BC的中点O,连接AO,DO,建立如图所示的空间直角坐标系Oxyz.
设BC=1,则A,
B,C,
D,所以=,=,=.
设平面ABD的法向量为n=(x,y,z),则,所以,取x=1,则y=-,z=1,所以n=(1,-,1),所以cos〈n,〉=,因此直线CD与平面ABD所成角的正弦值为.]
三、解答题
9.如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=AE=2,O,M分别为CE,AB的中点.
(1)求异面直线AB与CE所成角的大小;
(2)求直线CD与平面ODM所成角的正弦值.
[解] (1)∵DB⊥BA,平面ABDE⊥平面ABC,平面ABDE∩平面ABC=AB,DB?平面ABDE,∴DB⊥平面ABC.
∵BD∥AE,∴EA⊥平面ABC.
如图所示,以C为坐标原点,分别以CA,CB所在直线为x,y轴,以过点C且与EA平行的直线为z轴,建立空间直角坐标系.
∵AC=BC=4,∴C(0,0,0),A(4,0,0),B(0,4,0),E(4,0,4),
∴=(-4,4,0),=(4,0,4).
∴cos〈,〉==-,
∴异面直线AB与CE所成角的大小为.
(2)由(1)知O(2,0,2),D(0,4,2),M(2,2,0),
∴=(0,4,2),=(-2,4,0),=(-2,2,2).
设平面ODM的法向量为n=(x,y,z),
则由,可得,
令x=2,则y=1,z=1,∴n=(2,1,1).
设直线CD与平面ODM所成的角为θ,
则sin θ=|cos〈n,〉|==,
∴直线CD与平面ODM所成角的正弦值为.
10.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B-PD-A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
[解] (1)证明:设AC,BD交于点E,连接ME,
因为PD∥平面MAC,平面MAC∩平面PDB=ME,
所以PD∥ME.
因为四边形ABCD是正方形,
所以E为BD的中点,
所以M为PB的中点.

(2)如图②,取AD的中点O,连接OP,OE.
因为PA=PD,所以OP⊥AD.
又因为平面PAD⊥平面ABCD,且OP?平面PAD,
所以OP⊥平面ABCD.
因为OE?平面ABCD,所以OP⊥OE.
因为四边形ABCD是正方形,所以OE⊥AD.
如图②,建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).

设平面BDP的法向量为n=(x,y,z),
则即
令x=1,则y=1,z=.
于是n=(1,1,).
平面PAD的法向量为p=(0,1,0),
所以cos〈n,p〉==.
由题意知二面角B-PD-A为锐角,所以它的大小为.
(3)由题意知M,C(2,4,0),=.
设直线MC与平面BDP所成角为α,则sin α=|cos〈n,〉|==,
所以直线MC与平面BDP所成角的正弦值为.
[能力提升练]
1.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面ABC是等腰直角三角形,∠ACB=90°,侧棱AA1=2,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.则A1B与平面ABD所成角的正弦值为(  )
A.   B.   C.   D.
A [以C为坐标原点,CA所在的直线为x轴,CB所在的直线为y轴,CC1所在的直线为z轴建立空间直角坐标系,如图所示.
设CA=CB=a,则A(a,0,0),B(0,a,0),A1(a,0,2),D(0,0,1),∴E,G,=,=(0,-a,1).∵点E在平面ABD上的射影是△ABD的重心G,∴⊥平面ABD,∴·=0,解得a=2,∴=,=(2,-2,2),∵⊥平面ABD,∴为平面ABD的一个法向量.又cos〈,〉===,∴A1B与平面ABD所成角的正弦值为.]
2.如图,已知矩形ABCD与矩形ABEF全等,二面角D-AB-E为直二面角,M为AB的中点,FM与BD所成的角为θ,且cos θ=,则=(  )
A.1 B.
C. D.
C [不妨设BC=1,AB=λ,则=λ.记=a,=b,=c,则=b-a,=c-b,根据题意,|a|=|c|=1,|b|=λ,a·b=b·c=c·a=0,∴·=-b2=-λ2,而||=,||=,
∴|cos〈,〉|===,得λ=.故选C.]
3.在空间中,已知平面α过(3,0,0)和(0,4,0)及z轴上一点(0,0,a)(a>0),如果平面α与平面xOy的夹角为45°,则a=________.
 [平面xOy的法向量为n=(0,0,1),设平面α的法向量为u=(x,y,z),则
即3x=4y=az,取z=1,则u=.
而cos〈n,u〉==,
又∵a>0,∴a=.]
4.如图,四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD且PD=AD=1,AB=2,点E是线段AB上一点,当二面角P-EC-D为时,AE=________.
2- [设AE=a(0≤a≤2),以点D为坐标原点,,,的方向分别为x,y,z轴的正方向建立空间直角坐标系Dxyz(图略),则D(0,0,0),E(1,a,0),C(0,2,0),P(0,0,1),则=(1,a,-1),=(0,2,-1),设平面PEC的法向量为m=(x,y,z),则,即,令y=1,可得x=2-a,z=2,则m=(2-a,1,2),易知平面DEC的一个法向量为=(0,0,1),则|cos〈m,〉|==,解得a=2-或2+(舍去),所以AE=2-.]
5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.
[解] (1)证明:由题设可得△ABD≌△CBD,从而AD=CD.
又△ACD是直角三角形,
所以∠ADC=90°.
取AC的中点O,连接DO,BO,
则DO⊥AC,DO=AO.
又因为△ABC是正三角形,故BO⊥AC,
所以∠DOB为二面角D-AC-B的平面角.
在Rt△AOB中,BO2+AO2=AB2,
又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,
故∠DOB=90°.
所以平面ACD⊥平面ABC.
(2)由题设及(1)知,OA,OB,OD两两垂直,
以O为坐标原点,的方向为x轴正方向,||为单位长度,
建立如图所示的空间直角坐标系O-xyz,
则A(1,0,0),B(0,,0),C(-1,0,0),D(0,0,1).
由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得E,
故=(-1,0,1),=(-2,0,0),=.
设n=(x,y,z)是平面DAE的法向量,
则即
可取n=.
设m是平面AEC的法向量,则
同理可取m=(0,-1,),
则cos〈n,m〉==.
所以二面角D-AE-C的余弦值为.