首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
苏教版
选修2
2-1
第一章常用逻辑用语
本章复习与测试
2019-2020学年苏教版数学选修2-1 第1章《常用逻辑短语》 讲义(2份含答案)
文档属性
名称
2019-2020学年苏教版数学选修2-1 第1章《常用逻辑短语》 讲义(2份含答案)
格式
zip
文件大小
809.9KB
资源类型
教案
版本资源
苏教版
科目
数学
更新时间
2019-09-29 17:19:46
点击下载
文档简介
命题及其关系
最新考纲 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解充分条件、必要条件与充要条件的含义.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.命题
用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.
2.四种命题及其相互关系
(1)四种命题间的相互关系
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/SW4.TIF" \* MERGEFORMAT
(2)四种命题的真假关系
①两个命题互为逆否命题,它们具有相同的真假性.
②两个命题为互逆命题或互否命题时,它们的真假性没有关系.
3.充分条件、必要条件与充要条件的概念
若p?q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件 p?q且qp
p是q的必要不充分条件 pq且q?p
p是q的充要条件 p?q
p是q的既不充分也不必要条件 pq且qp
[微点提醒]
1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.
2.区别A是B的充分不必要条件(A?B且BA),与A的充分不必要条件是B(B?A且A B)两者的不同.
3.A是B的充分不必要条件?綈B是綈A的充分不必要条件.
基 础 自 测
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)“x2+2x-3<0”是命题.( )
(2)命题“若p,则q”的否命题是“若p,则綈q”.( )
(3)当q是p的必要条件时,p是q的充分条件.( )
(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )
解析 (1)错误.该语句不能判断真假,故该说法是错误的.
(2)错误.否命题既否定条件,又否定结论.
答案 (1)× (2)× (3)√ (4)√
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/教材衍化.TIF" \* MERGEFORMAT
2.(选修2-1P6练习引申)命题“若α=,则tan α=1”的逆否命题是( )
A.若α≠,则tan α≠1 B.若α=,则tan α≠1
C.若tan α≠1,则α≠ D.若tan α≠1,则α=
解析 命题“若p,则q”的逆否命题是“若綈q,则綈p”,所以该命题的逆否命题是“若tan α≠1,则α≠”.
答案 C
3.(选修2-1P8AT2(1)改编)“若a,b都是偶数,则ab必是偶数”的逆否命题为________.
解析 “a,b都是偶数”的否定为“a,b不都是偶数”,“ab是偶数”的否定为“ab不是偶数”,故其逆否命题为“若ab不是偶数,则a,b不都是偶数”.
答案 若ab不是偶数,则a,b不都是偶数
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/考题体验.TIF" \* MERGEFORMAT
4.(2018·天津卷)设x∈R,则“<”是“x3<1”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
解析 由<,得0
答案 A
5.(2017·北京卷)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.
解析 a>b>c,取a=-2,b=-4,c=-5,
则a+b=-6
答案 -2,-4,-5(答案不唯一)
6.(2019·安徽江南十校联考)“a=0”是“函数f(x)=sin x-+a为奇函数”的________条件.
解析 显然a=0时,f(x)=sin x-为奇函数;
当f(x)为奇函数时,
f(-x)+f(x)=sin(-x)-+a+sin x-+a=0.
因此2a=0,故a=0.
所以“a=0”是“函数f(x)为奇函数”的充要条件.
答案 充要
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/考点聚焦突破.tif" \* MERGEFORMAT
考点一 命题及其关系
【例1】 (1)(2019·郑州模拟)下列说法正确的是( )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.“若am2
C.存在x0∈(0,+∞),使3x0>4 x0成立
D.“若sin α≠,则α≠”是真命题
(2)(2018·北京卷)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.
解析 (1)对于选项A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,A错;
对于B项,若“am2
对于C项,由指数函数的图象知,?x∈(0,+∞),都有4x>3x,C错;
对于D项,原命题的逆否命题为“若α=,则sin α=”是真命题,故原命题是真命题.
(2)根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f(x)min=f(0).
答案 (1)D (2)f(x)=sin x,x∈[0,2](答案不唯一 ,再如f(x)=)
规律方法 1.写一个命题的其他三种命题时,需注意:
(1)对于不是“若p,则q”形式的命题,需先改写;
(2)若命题有大前提,写其他三种命题时需保留大前提.
2.(1)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.
(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.
【训练1】 (1)(2018·肇庆一诊)命题“若a,b,c成等比数列,则b2=ac”的逆否命题是( )
A.“若a,b,c成等比数列,则b2≠ac”
B.“若a,b,c不成等比数列,则b2≠ac”
C.“若b2=ac,则a,b,c成等比数列”
D.“若b2≠ac,则a,b,c不成等比数列”
(2)命题p:若x>0,则x>a;命题q:若m≤a-2,则m
解析 (1)命题“若a,b,c成等比数列,则b2=ac”的逆否命题是“若b2≠ac,则a,b,c不成等比数列”.
(2)命题p的逆命题是若x>a,则x>0,故a≥0.因为命题q的逆否命题为真命题,所以命题q为真命题,则a-2<-1,解得a<1.则实数a的取值范围是[0,1).
答案 (1)D (2)[0,1)
考点二 充分条件与必要条件的判定
【例2】 (1)(2018·北京卷)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
(2)设函数f(x)=则“m>1是f[f(-1)]>4”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
解析 (1)|a-3b|=|3a+b|?(a-3b)2=(3a+b)2?a2-6a·b+9b2=9a2+6a·b+b2,又∵|a|=|b|=1,
∴a·b=0?a⊥b,因此|a-3b|=|3a+b|是“a⊥b”的充要条件.
(2)当m>1时,f [f(-1)]=f =f(2)=22m+1>4,
当f[f(-1)]>4时,f [f(-1)]=f =f(2)=22m+1>4=22,
∴2m+1>2,解得m>.
故“m>1”是“f[f(-1)]>4”的充分不必要条件.
答案 (1)C (2)A
规律方法 充要条件的三种判断方法
(1)定义法:根据p?q,q?p进行判断.
(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.
(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.
【训练2】 (1)(2018·浙江卷)已知平面α,直线m,n满足m?α,n?α,则“m∥n”是“m∥α”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
(2)(2019·佛山质检)已知函数f(x)=3x-3-x,?a,b∈R,则“a>b”是“f(a)>f(b)”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 (1)若m?α,n?α,m∥n,由线面平行的判定定理知m∥α.若m∥α,m?α,n?α,不一定推出m∥n,直线m与n可能异面,故“m∥n”是“m∥α”的充分不必要条件.
(2)因为f(x)=3x-3-x,
所以f′(x)=3xln 3-3-xln 3×(-1)=3xln 3+3-xln 3,
易知f′(x)>0,
所以函数f(x)=3x-3-x为(-∞,+∞)上的单调递增函数,从而由“a>b”可得“f(a)>f(b)”,由“f(a)>f(b)”可得“a>b”,即“a>b”是“f(a)>f(b)”的充要条件.
答案 (1)A (2)C
考点三 充分条件、必要条件的应用 INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/箭头.TIF" \* MERGEFORMAT 典例迁移
【例3】 (经典母题)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求实数m的取值范围.
解 由x2-8x-20≤0,得-2≤x≤10,
∴P={x|-2≤x≤10}.
∵x∈P是x∈S的必要条件,则S?P.
∴解得m≤3.
又∵S为非空集合,∴1-m≤1+m,解得m≥0.
综上,m的取值范围是[0,3].
【迁移探究1】 本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件?并说明理由.
解 由例题知P={x|-2≤x≤10}.
若x∈P是x∈S的充要条件,则P=S,
∴∴
这样的m不存在.
【迁移探究2】 设p:P={x|x2-8x-20≤0},q:非空集合S={x|1-m≤x≤1+m},且綈p是綈q的必要不充分条件,求实数m的取值范围.
解 由例题知P={x|-2≤x≤10}.
∵綈p是綈q的必要不充分条件,
p是q的充分不必要条件.
∴p?q且q p,即P?S.
∴或
∴m≥9,又因为S为非空集合,
所以1-m≤1+m,解得m≥0,
综上,实数m的取值范围是[9,+∞).
规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.
(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.
【训练3】 (2018·浏阳三校联考)设p:实数x满足x2-4ax+3a2<0,a∈R;q:实数x满足x2-x-6≤0或x2+2x-8>0.若a<0且p是q的充分不必要条件,求实数a的取值范围.
解 由p得(x-3a)(x-a)<0,当a<0时,3a
由q得x2-x-6≤0或x2+2x-8>0,则-2≤x≤3或x<-4或x>2,则x<-4或x≥-2.
设p:A=(3a,a),q:B=(-∞,-4)∪[-2,+∞),
又p是q的充分不必要条件.
可知A?B,∴a≤-4或3a≥-2,即a≤-4或a≥-.
又∵a<0,∴a≤-4或-≤a<0,
即实数a的取值范围为(-∞,-4]∪.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断四种命题之间的关系时,首先要注意分清命题的条件与结论,再比较每个命题的条件与结论之间的关系,并注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地有了它的“逆命题”、“否命题”、“逆否命题”.
2.充分、必要条件与集合的关系,p,q成立的对象构成的集合分别为A和B.
(1)若A?B,则p是q的充分条件,q是p的必要条件.
(2)若A?B,则p是q的充分不必要条件,q是p的必要不充分条件.
(3)若A=B,则p是q的充要条件.
[易错防范]
1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.
2.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:30分钟)
一、选择题
1.(2019·河南八市联考)命题“若a>b,则a+c>b+c”的否命题是( )
A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤b
C.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c
解析 将条件、结论都否定.命题的否命题是“若a≤b,则a+c≤b+c”.
答案 A
2.设x∈R,则“2-x≥0”是“|x-1|≤1”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
解析 由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2.
当x≤2时不一定有0≤x≤2,而当0≤x≤2时一定有x≤2,
∴“2-x≥0”是“|x-1|≤1”的必要而不充分条件.
答案 B
3.设a>b,a,b,c∈R,则下列命题为真命题的是( )
A.ac2>bc2 B.>1
C.a-c>b-c D.a2>b2
解析 对于选项A,a>b,若c=0,则ac2=bc2,故A错;对于选项B,a>b,若a>0,b<0,则<1,故B错;对于选项C,a>b,则a-c>b-c,故C正确;对于选项D,a>b,若a,b均小于0,则a2
答案 C
4.(2018·成都诊断)命题p:cos θ=,命题q:tan θ=1,则p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 由cos θ=,得θ=±+2kπ,k∈Z,则tan θ=±1,
故p q,p是q的不充分条件;
由tan θ=1,得θ=+kπ,k∈Z,则cos θ=±,
故q p,p是q的不必要条件;
所以p是q的既不充分也不必要条件.
答案 D
5.原命题:设a,b,c∈R,若“a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )
A.0个 B.1个 C.2个 D.4个
解析 原命题:若c=0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为:设a,b,c∈R,若“ac2>bc2,则a>b”.由ac2>bc2知c2>0,∴由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.
答案 C
6.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是
綈p,则a的取值范围是( )
A.[1,+∞) B.(-∞,1]
C.[-1,+∞) D.(-∞,-3]
解析 由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.
答案 A
7.(2017·北京卷)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析 存在负数λ,使得m=λn,则m·n=λn·n=λ|n|2<0;反之m·n=|m||n|cos〈m,n〉<0?cos〈m,n〉<0?〈m,n〉∈,当〈m,n〉∈时,m,n不共线.故“存在负数λ,使得m=λn”是“m·n<0”的充分不必要条件.
答案 A
8.下列结论错误的是( )
A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”
B.“x=4”是“x2-3x-4=0”的充分条件
C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题
D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”
解析 C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,
即m≥-,不能推出m>0.所以不是真命题.
答案 C
二、填空题
9.王昌龄的《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的________条件(填“充分”“必要”“充要”“既不充分也不必要”中的一个).
解析 “攻破楼兰”不一定“返回家乡”,但“返回家乡”一定是“攻破楼兰”,故“攻破楼兰”是“返回家乡”的必要条件.
答案 必要
10.以下关于命题的说法正确的有________(填写所有正确命题的序号).
①“若log2a>0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数”是真命题;
②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;
③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;
④命题“若a∈M,则b?M”与命题“若b∈M,则a?M”等价.
解析 ①不正确.由log2a>0,得a>1,∴f(x)=logax在其定义域内是增函数.
②正确.由命题的否命题定义知,该说法正确.
③不正确,原命题的逆命题为:“若x+y是偶数,则x,y都是偶数”,是假命题,如1+3=4为偶数,但1和3均为奇数.④正确.两者互为逆否命题,因此两命题等价.
答案 ②④
11.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.
解析 直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于<,解之得-1
答案 -1
12.(2019·湖南师大附中月考)设p:ln(2x-1)≤0,q:(x-a)[x-(a+1)]≤0,若q是p的必要而不充分条件,则实数a的取值范围是________.
解析 p对应的集合A={x|y=ln(2x-1)≤0}=,q对应的集合B={x|(x-a)[x-(a+1)]≤0}={x|a≤x≤a+1},由q是p的必要而不充分条件可知A?B,所以a≤且a+1≥1,所以0≤a≤.
答案
能力提升题组
(建议用时:10分钟)
13.(2017·浙江卷)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析 由S4+S6-2S5=S6-S5-(S5-S4)=a6-a5=d,所以S4+S6>2S5等价d>0,所以“d>0”是“S4+S6>2S5”的充要条件.
答案 C
14.(一题多解)(2019·江西新课程教学质量监测)已知命题p:x2+2x-3>0;命题q:>0,且綈q的一个必要不充分条件是綈p,则a的取值范围是( )
A.[-3,0] B.(-∞,-3]∪[0,+∞)
C.(-3,0) D.(-∞,-3)∪(0,+∞)
解析 法一 由x2+2x-3>0,得x<-3或x>1.
则綈p对应的集合为A={x|-3≤x≤1}.
命题q:x>a+1或x
则綈q对应的集合为B={x|a≤x≤a+1}.
依题意綈q是綈p的充分不必要条件,所以B?A,
故解得-3≤a≤0.
法二 ∵綈q的一个必要不充分条件是綈p,
∴綈p是綈q的必要不充分条件,即p是q的充分不必要条件,
p对应的集合C={x|x2+2x-3>0}={x|x<-3或x>1},
q对应的集合D=={x|x>a+1或x
由于p是q的充分不必要条件知,C?D,
∴解得-3≤a≤0.
答案 A
15.若不等式m-1
解析 由题意可知?(m-1,m+1),借助数轴得解得-≤m≤,
故实数m的取值范围是.
答案
16.“a=1”是“函数f(x)=-是奇函数”的__________条件.
解析 当a=1时,f(-x)=-f(x)(x∈R),则f(x)是奇函数,充分性成立.
若f(x)为奇函数,恒有f(-x)=-f(x),得(1-a2)(e2x+1)=0,则a=±1,必要性不成立.故“a=1”是“函数f(x)=-是奇函数”的充分不必要条件.
答案 充分不必要
简单的逻辑联结词、全称量词与存在量词
最新考纲 1.了解逻辑联结词“或”、“且”、“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.简单的逻辑联结词
(1)命题中的且、或、非叫做逻辑联结词.
(2)命题p∧q,p∨q,綈p的真假判断
p q p∧q p∨q 綈p
真 真 真 真 假
真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
2.全称量词与存在量词
(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“?”表示.
(2)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“?”表示.
3.全称命题和特称命题
名称形式 全称命题 特称命题
结构 对M中的任意一个x,有p(x)成立 存在M中的一个x0,使p(x0)成立
简记 ?x∈M,p(x) ?x0∈M,p(x0)
否定 ?x0∈M,綈p(x0) ?x∈M,綈p(x)
[微点提醒]
1.含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与綈p→真假相反.
2.含有一个量词的命题的否定规律是“改量词,否结论”.
3.“p∨q”的否定是“(綈p)∧(綈q)”,“p∧q”的否定是“(綈p)∨(綈q)”.
基 础 自 测
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)命题“5>6或5>2”是假命题.( )
(2)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.( )
(3)“长方形的对角线相等”是特称命题.( )
(4)?x0∈M,p(x0)与?x∈M,綈p(x)的真假性相反.( )
解析 (1)错误.命题p∨q中,p,q有一真则真.
(2)错误.p∧q是真命题,则p,q都是真命题.
(3)错误.命题“长方形的对角线相等”是全称命题.
答案 (1)× (2)× (3)× (4)√
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/教材衍化.TIF" \* MERGEFORMAT
2.(选修2-1P26A3改编)命题“?x∈R,x2+x≥0”的否定是( )
A.?x0∈R,x+x0≤0 B.?x0∈R,x+x0<0
C.?x∈R,x2+x≤0 D.?x∈R,x2+x<0
解析 由全称命题的否定是特称命题知命题B正确.
答案 B
3.(选修2-1P18A1(3)改编)已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为( )
A.1 B.2 C.3 D.4
解析 p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.
答案 B
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/考题体验.TIF" \* MERGEFORMAT
4.(2019·贵阳调研)下列命题中的假命题是( )
A.?x0∈R,lg x0=1 B.?x0∈R,sin x0=0
C.?x∈R,x3>0 D.?x∈R,2x>0
解析 当x=10时,lg 10=1,则A为真命题;当x=0时,sin 0=0,则B为真命题;当x<0时,x3<0,则C为假命题;由指数函数的性质知,?x∈R,2x>0,则D为真命题.
答案 C
5.(2018·安徽江南十校模拟)已知命题p,q,“綈p为真”是“p∧q为假”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 由綈p为真知,p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p为假,故“綈p为真”是“p∧q为假”的充分不必要条件.
答案 A
6.(2019·豫南五校联考)若“?x∈,m≤tan x+2”为真命题,则实数m的最大值为________.
解析 由x∈,∴1≤tan x+2≤2+.
∵“?x∈,m≤tan x+2”为真命题,则m≤1.
∴实数m的最大值为1.
答案 1
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/考点聚焦突破.tif" \* MERGEFORMAT
考点一 含有逻辑联结词的命题的真假判断
【例1】 (1)设a,b,c是非零向量.已知命题p: 若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )
A.p∨q B.p∧q
C.(綈p)∧(綈q) D.p∧(綈q)
(2)(2018·太原模拟)已知命题p:?x0∈R,x-x0+1≥0;命题q:若a
,则下列命题中为真命题的是( )
A.p∧q B.p∧(綈q)
C.(綈p)∧q D.(綈p)∧(綈q)
解析 (1)取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,∴p是假命题.
又a,b,c是非零向量,
由a∥b知a=xb(x∈R),由b∥c知b=yc(y∈R),
∴a=xyc,∴a∥c,∴q是真命题.
综上知p∨q是真命题,p∧q是假命题.
綈p为真命题,綈q为假命题.
∴(綈p)∧(綈q),p∧(綈q)都是假命题.
(2)∵x2-x+1=+≥>0,所以?x0∈R,使x-x0+1≥0成立,故p为真命题,綈p为假命题.又易知命题q为假命题,所以綈q为真命题,所以p∧(綈q)为真命题.
答案 (1)A (2)B
规律方法 1.“p∨q”、“p∧q”、“綈p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成形式;(2)判断其中命题p,q的真假;(3)确定“p∨q”“p∧q”“綈p”形式命题的真假.
2.p∧q形式是“一假必假,全真才真”,p∨q形式是“一真必真,全假才假”,綈p则是“与p的真假相反”.
【训练1】 (1)(2019·济南模拟)若命题“p∨q”与命题“綈p”都是真命题,则( )
A.命题p与命题q都是真命题
B.命题p与命题q都是假命题
C.命题p是真命题,命题q是假命题
D.命题p是假命题,命题q是真命题
(2)(2017·山东卷)已知命题p:?x∈R,x2-x+1≥0;命题q:若a2
A.p∧q B.p∧綈q
C.綈p∧q D.綈p∧綈q
解析 (1)因为綈p为真命题,所以p为假命题,又p∨q为真命题,所以q为真命题.
(2)∵一元二次方程x2-x+1=0的判别式Δ=(-1)2-4×1×1<0,∴x2-x+1>0恒成立,
∴p是真命题,綈p为假命题.
∵当a=-1,b=-2时,(-1)2<(-2)2,但-1>-2,
∴q为假命题,綈q为真命题.
∴p∧綈q为真命题,p∧q,綈p∧q,綈p∧綈q为假命题.
答案 (1)D (2)B
考点二 全称量词与存在量词 INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/箭头.TIF" \* MERGEFORMAT 多维探究
角度1 含有量词命题的否定
【例2-1】 命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( )
A.?n∈N*,f(n)?N*且f(n)>n
B.?n∈N*,f(n)?N*或f(n)>n
C.?n0∈N*,f(n0)?N*且f(n0)>n0
D.?n0∈N*,f(n0)?N*或f(n0)>n0
解析 全称命题的否定为特称命题,
∴命题的否定是:?n0∈N*,f(n0)?N*或f(n0)>n0.
答案 D
角度2 全称(特称)命题的真假判断
【例2-2】 (1)(2019·江西师大附中月考)已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是( )
A.?x∈R,f(-x)≠f(x)
B.?x∈R,f(-x)≠-f(x)
C.?x0∈R,f(-x0)≠f(x0)
D.?x0∈R,f(-x0)≠-f(x0)
(2)(2018·昆明一中质检)已知命题p:?x∈R,x+≥2;命题q:?x0∈(0,+∞),x>x,则下列命题中为真命题的是( )
A.(綈p)∧q B.p∧(綈q)
C.(綈p)∧(綈q) D.p∧q
解析 (1)∵定义域为R的函数f(x)不是偶函数,∴?x∈R,f(-x)=f(x)为假命题,∴?x0∈R,f(-x0)≠f(x0)为真命题.
(2)对于p:当x=-1时,x+=-2,∴p为假命题.取x0∈(0,1),此时x>x,∴q为真命题.
从而綈p为真命题,(綈p)∧q为真命题.
答案 (1)C (2)A
规律方法 1.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.
2.判定全称命题“?x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判断特称命题是真命题,只要在限定集合内至少找到一个x=x0,使p(x0)成立.
【训练2】 (1)(2019·河北“五个一”名校联考)命题“?x0∈R,1
A.?x∈R,1
B.?x0∈R,1
C.?x0∈R,f(x0)≤1或f(x0)>2
D.?x∈R,f(x)≤1或f(x)>2
(2)已知命题p:?x0∈(-∞,0),2x0<3x0;命题q:?x∈,sin x
A.p∧q B.p∧(綈q)
C.(綈p)∧q D.(綈p)∧(綈q)
解析 (1)特称命题的否定是全称命题,原命题的否定形式为“?x∈R,f(x)≤1或f(x)>2”.
(2)因为当x<0时,>1,即2x>3x,所以命题p为假命题,从而綈p为真命题;因为当x∈时,x>sin x,所以命题q为真命题,所以(綈p)∧q为真命题.
答案 (1)D (2)C
考点三 由命题的真假求参数的取值范围
【例3】 (1)(2018·长沙调研)已知命题p:?x∈R,log2(x2+x+a)>0恒成立,命题q:?x0∈[-2,2],2a≤2x0,若命题p∧q为真命题,则实数a的取值范围为________.
(2)已知f(x)=ln(x2+1),g(x)=-m,若对?x1∈[0,3],?x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是________.
解析 (1)由题知,命题p:?x∈R,log2(x2+x+a)>0恒成立,即x2+x+a-1>0恒成立,所以Δ=1-4(a-1)<0,解得a>;命题q:?x0∈[-2,2],使得2a≤2x0,则a≤2.当p∧q为真命题时,须满足故实数a的取值范围为.
(2)当x∈[0,3]时,f(x)min=f(0)=0,当x∈[1,2]时,g(x)min=g(2)=-m,对?x1∈[0,3],?x2∈[1,2]使得f(x1)≥g(x2)等价于f(x)min≥g(x)min,得0≥-m,所以m≥.
答案 (1) (2)
规律方法 1.由含逻辑联结词的命题真假求参数的方法步骤:
(1)求出每个命题是真命题时参数的取值范围;
(2)根据每个命题的真假情况,求出参数的取值范围.
2.全称命题可转化为恒成立问题.
含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决.
【训练3】 本例(2)中,若将“?x2∈[1,2]”改为“?x2∈[1,2]”,其他条件不变,则实数m的取值范围是____________.
解析 当x∈[1,2]时,g(x)max=g(1)=-m,对?x1∈[0,3],?x2∈[1,2]使得f(x1)≥g(x2)等价于f(x)min≥g(x)max,得0≥-m,∴m≥.
答案
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”“且”“非”字眼,要结合语句的含义理解.
2.要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题的区别;否定的规律是“改量词,否结论”.
[易错防范]
1.正确区别命题的否定与否命题
“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“綈p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真.
2.几点注意:
(1)注意命题是全称命题还是特称命题,是正确写出命题的否定的前提;
(2)注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定;
(3)注意“或”“且”的否定,“或”的否定为“且”,“且”的否定为“或”.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/核心素养提升A.tif" \* MERGEFORMAT
逻辑推理、数学运算——突破双变量“存在性或任意性”问题
逻辑推理的关键要素是:逻辑的起点、推理的形式、结论的表达.解决双变量“存在性或任意性”问题关键就是将含有全称量词和存在量词的条件“等价转化”为两个函数值域之间的关系(或两个函数最值之间的关系),目的在于培养学生的逻辑推理素养和良好的数学思维品质.
类型1 形如“对任意x1∈A,都存在x2∈B,使得g(x2)=f(x1)成立”
【例1】 已知函数f(x)=x3+(1-a)x2-a(a+2)x,g(x)=x-,若对任意x1∈
[-1,1],总存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立,求实数a的取值范围.
解 由题意知,g(x)在[0,2]上的值域为.
令h(x)=f′(x)+2ax=3x2+2x-a(a+2),则h′(x)=6x+2,由h′(x)=0得x=-.
当x∈时,h′(x)<0;当x∈时,h′(x)>0,所以[h(x)]min=h=-a2-2a-.
又由题意可知,h(x)的值域是的子集,所以
解得实数a的取值范围是[-2,0].
评析 理解全称量词与存在量词的含义是求解本题的关键,此类问题求解的策略是“等价转化”,即“函数f(x)的值域是g(x)的值域的子集”从而利用包含关系构建关于a的不等式组,求得参数的取值范围.
类型2 形如“存在x1∈A及x2∈B,使得f(x1)=g(x2)成立”
【例2】 已知函数f(x)=函数g(x)=ksin-2k+2(k>0),若存在x1∈[0,1]及x2∈[0,1],使得f(x1)=g(x2)成立,求实数k的取值范围.
解 由题意,易得函数f(x)的值域为[0,1],g(x)的值域为,并且两个值域有公共部分.
先求没有公共部分的情况,即2-2k>1或2-k<0,解得k<或k>,所以,要使两个值域有公共部分,k的取值范围是.
评析 本类问题的实质是“两函数f(x)与g(x)的值域的交集不为空集”,上述解法的关键是利用了补集思想.另外,若把此种类型中的两个“存在”均改为“任意”,则“等价转化”策略是利用“f(x)的值域和g(x)的值域相等”来求解参数的取值范围.
类型3 形如“对任意x1∈A,都存在x2∈B,使得f(x1)
【例3】 已知函数f(x)=x+,g(x)=2x+a,若?x1∈,?x2∈[2,3],使得f(x1)≤g(x2),则实数a的取值范围是________.
解析 依题意知f(x)max≤g(x)max.
∵f(x)=x+在上是减函数,
∴f(x)max=f=.
又g(x)=2x+a在[2,3]上是增函数,∴g(x)max=8+a,
因此≤8+a,则a≥.
答案
评析 理解量词的含义,将原不等式转化为[f(x)]max≤[g(x)]max;利用函数的单调性,求f(x)与g(x)的最大值,得关于a的不等式求得a的取值范围.
思考1:在[例3]中,若把“?x2∈[2,3]”变为“?x2∈[2,3]”时,其它条件不变,则a的取值范围是________.
问题“等价转化”为[f(x)]max≤[g(x)]min,请读者完成.
思考2:在[例3]中,若将[例3]中“?x1∈”改为“?x1∈”,其它条件不变,则a的取值范围是______.
问题“等价转化”为f(x)min≤g(x)max,请读者自行求解.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:30分钟)
一、选择题
1.(2019·益阳调研)已知命题p:“?a≥0,a4+a2≥0”,则命题綈p为( )
A.?a≥0,a4+a2<0 B.?a≥0,a4+a2≤0
C.?a0<0,a+a<0 D.?a0≥0,a+a<0
解析 命题p为全称命题,其否定为特称命题.将量词改变,否定结论,即綈p为?a0≥0,a+a<0.
答案 D
2.第十八届亚运会于2018年8月28日在雅加达隆重开幕,在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为( )
A.(綈p)∨(綈q) B.p∨(綈q)
C.(綈p)∧(綈q) D.p∨q
解析 命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(綈p)∨(綈q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p∧q”的否定选A.
答案 A
3.(2018·昆明诊断)已知命题“?x∈R,4x2+(a-2)x+≤0”是假命题,则实数a的取值范围为( )
A.(-∞,0) B.[0,4] C.[4,+∞) D.(0,4)
解析 因为命题“?x∈R,4x2+(a-2)x+≤0”是假命题,所以其否定命题“?x∈R,4x2+(a-2)x+>0”是真命题.
则Δ=(a-2)2-4×4×=a2-4a<0,解得0
答案 D
4.命题p:函数y=log2(x-2)的单调递增区间是[1,+∞),命题q:函数y=的值域为(0,1).下列命题是真命题的为( )
A.p∧q B.p∨q C.p∧(綈q) D.綈q
解析 由于y=log2(x-2)的单调递增区间是(2,+∞),
所以命题p是假命题.
由3x>0,得3x+1>1,所以0<<1,
所以函数y=的值域为(0,1),故命题q为真命题.
所以p∧q为假命题,p∨q为真命题,p∧(綈q)为假命题,綈q为假命题.
答案 B
5.已知命题p:“?x∈[0,1],a≥ex”,命题q:“?x0∈R,x+4x0+a=0”.若命题“p∧q”是真命题,则实数a的取值范围是( )
A.(4,+∞) B.[1,4] C.[e,4] D.(-∞,-1)
解析 由题意知p与q均为真命题,由p为真,可知a≥e,由q为真,知x2+4x+a=0有解,则Δ=16-4a≥0,∴a≤4.综上可知e≤a≤4.
答案 C
6.(2019·淮北模拟)命题p:若向量a·b<0,则a与b的夹角为钝角;命题q:若cos α·cos β=1,则sin(α+β)=0.下列命题为真命题的是( )
A.p B.綈q C.p∧q D.p∨q
解析 当a,b方向相反时,a·b<0,但夹角是180°,不是钝角,命题p是假命题;
若cos αcos β=1,则cos α=cos β=1或cos α=cos β=-1,所以sin α=sin β=0,从而sin(α+β)=0,命题q是真命题,所以p∨q是真命题.
答案 D
7.已知命题p:?x∈R,2x<3x,命题q:?x∈R,x2=2-x,若命题(綈p)∧q为真命题,则x的值为( )
A.1 B.-1 C.2 D.-2
解析 要使(綈p)∧q为真,所以綈p与q同时为真,而綈p:?x∈R,2x≥3x,
由2x≥3x得≥1,所以x≤0.
由x2=2-x得x2+x-2=0,所以x=1或x=-2.
又x≤0,所以x=-2.
答案 D
8.已知函数f(x)=a2x-2a+1.若命题“?x∈(0,1),f(x)≠0”是假命题,则实数a的取值范围是( )
A. B.(1,+∞)
C. D.∪(1,+∞)
解析 ∵函数f(x)=a2x-2a+1,
命题“?x∈(0,1),f(x)≠0”是假命题,
∴原命题的否定是:“?x0∈(0,1),使f(x0)=0”是真命题,
∴f(1)f(0)<0,即(a2-2a+1)(-2a+1)<0,
∴(a-1)2(2a-1)>0,解得a>,且a≠1,
∴实数a的取值范围是∪(1,+∞).
答案 D
二、填空题
9.若“?x∈,tan x≤m”是真命题,则实数m的最小值为________.
解析 ∵函数y=tan x在上是增函数,∴ymax=tan =1,依题意,m≥ymax,即m≥1.∴m的最小值为1.
答案 1
10.已知命题p:>0,则綈p对应的集合为__________.
解析 由p:>0,得p:x>2或x<-1,所以綈p对应的集合为{x|-1≤x≤2}.
答案 {x|-1≤x≤2}
11.下列结论:
①若命题p:?x0∈R,tan x0=1;命题q:?x∈R,x2-x+1>0,则命题“p∧
(綈q)”是假命题;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3;
③命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”.
其中正确结论的序号为________.
解析 ①中命题p为真命题,命题q为真命题,
所以p∧(綈q)为假命题,故①正确;
②当b=a=0时,有l1⊥l2,故②不正确;
③正确,所以正确结论的序号为①③.
答案 ①③
12.已知命题p:?x0∈R,(m+1)(x+1)≤0,命题q:?x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m的取值范围为________.
解析 由命题p:?x0∈R,(m+1)(x+1)≤0可得m≤-1;由命题q:?x∈R,x2+mx+1>0恒成立,即Δ=m2-4<0,可得-2
若p∧q为真命题,则-2
因为p∧q为假命题,所以m≤-2或m>-1.
答案 (-∞,-2]∪(-1,+∞)
能力提升题组
(建议用时:15分钟)
13.命题“?x∈R,?n∈N*,使得n≥x2”的否定形式是( )
A.?x∈R,?n∈N*,使得n
B.?x∈R,?n∈N*,使得n
C.?x∈R,?n∈N*,使得n
D.?x0∈R,?n∈N*,使得n
解析 改变量词,否定结论.
∴綈p应为:?x0∈R,?n∈N*,使得n
答案 D
14.(2018·郑州模拟)已知命题p:关于x的方程x2+ax+1=0没有实根;命题q:?x>0,2x-a>0.若“綈p”和“p∧q”都是假命题,则实数a的取值范围是( )
A.(-∞,-2)∪(1,+∞) B.(-2,1]
C.(1,2) D.(1,+∞)
解析 方程x2+ax+1=0没有实根等价于Δ=a2-4<0,即-2
0,2x-a>0等价于a<2x在(0,+∞)上恒成立,即a≤1.
因“綈p”是假命题,则p是真命题,又因“p∧q”是假命题,则q是假命题.
∴解得1
答案 C
15.已知函数f(x)=给出下列两个命题:命题p:?m∈(-∞,0),方程f(x)=0有解,命题q:若m=,则f[f(-1)]=0,那么,下列命题为真命题的是________(填序号).
①p∧q;②(綈p)∧q;③p∧(綈q);④(綈p)∧(綈q).
解析 因为3x>0,当m<0时,m-x2<0,
所以命题p为假命题;
当m=时,因为f(-1)=3-1=,
所以f[f(-1)]=f=-=0,
所以命题q为真命题,
逐项检验可知,只有(綈p)∧q为真命题.
答案 ②
16.(2019·深圳质检)设p:实数x满足x2-4ax+3a2<0,q:实数x满足|x-3|<1.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若a>0且綈p是綈q的充分不必要条件,求实数a的取值范围.
解 (1)由x2-4ax+3a2<0得(x-3a)(x-a)<0,
当a=1时,1
由|x-3|<1得-1
即q为真时,实数x的取值范围是(2,4),
若p∧q为真,则p真且q真,
故实数x的取值范围是(2,3).
(2)由x2-4ax+3a2<0得(x-3a)(x-a)<0,
又a>0,所以a
若綈p是綈q的充分不必要条件,
则綈p?綈q,且綈q ? 綈p,所以q?p,且p? q,
即q是p的充分不必要条件.
设A={x|p},B={x|q},则B?A,
又A={x|p}={x|a
所以3a≥4且a≤2,解得≤a≤2,
∴实数a的取值范围是.
点击下载
同课章节目录
2-1
第一章常用逻辑用语
第二章圆锥曲线与方程
第三章空间向量与立体几何
2-2
第一章导数及其应用
第二章推理与证明
第三章数系的扩充与复数的引入
2-3
第一章计数原理
第二章 概率
第三章统计案例
点击下载
VIP下载