首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
苏教版
必修1
第2章 函数
本章复习与测试
2019-2020学年苏教版数学必修1 第2章《函数》(3份含答案)
文档属性
名称
2019-2020学年苏教版数学必修1 第2章《函数》(3份含答案)
格式
zip
文件大小
1.3MB
资源类型
教案
版本资源
苏教版
科目
数学
更新时间
2019-10-01 08:18:29
点击下载
文档简介
函数及其表示
最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.函数与映射的概念
函数 映射
两个集合A,B 设A,B是两个非空数集 设A,B是两个非空集合
对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应 如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应
名称 称f:A→B为从集合A到集合B的一个函数 称f:A→B为从集合A到集合B的一个映射
记法 函数y=f(x),x∈A 映射:f:A→B
2.函数的定义域、值域
(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.
3.函数的表示法
表示函数的常用方法有解析法、图象法和列表法.
4.分段函数
(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
[微点提醒]
1.函数是特殊的映射,是定义在非空数集上的映射.
2.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.
基 础 自 测
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)函数y=1与y=x0是同一个函数.( )
(2)对于函数f:A→B,其值域是集合B.( )
(3)f(x)=+是一个函数.( )
(4)若两个函数的定义域与值域相同,则这两个函数相等.( )
解析 (1)错误.函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故不是同一函数.
(2)错误.值域C?B,不一定有C=B.
(3)错误.f(x)=+中x不存在.
(4)错误.若两个函数的定义域、对应法则均对应相同时,才是相等函数.
答案 (1)× (2)× (3)× (4)×
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/教材衍化.TIF" \* MERGEFORMAT
2.(必修1P25B2改编)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/F1A.TIF" \* MERGEFORMAT
解析 A中函数定义域不是[-2,2];C中图象不表示函数;D中函数值域不是[0,2].
答案 B
3.(必修1P18例2改编)下列函数中,与函数y=x+1是相等函数的是( )
A.y=()2 B.y=+1
C.y=+1 D.y=+1
解析 对于A,函数y=()2的定义域为{x|x≥-1},与函数y=x+1的定义域不同,不是相等函数;对于B,定义域和对应法则分别对应相同,是相等函数;对于C,函数y=+1的定义域为{x|x≠0},与函数y=x+1的定义域x∈R不同,不是相等函数;对于D,定义域相同,但对应法则不同,不是相等函数.
答案 B
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/考题体验.TIF" \* MERGEFORMAT
4.(2019·珠海期中)已知f(x5)=lg x,则f(2)=( )
A.lg 2 B.lg 5 C.lg 2 D.lg 3
解析 令x5=2,则x=2,
∴f(2)=lg 2=lg 2.
答案 A
5.(2019·河南、河北两省重点高中联考)函数f(x)=+ln(x+4)的定义域为________.
解析 要使f(x)有意义,则解得-4
答案 (-4,1]
6.(2018·福州调研)已知函数f(x)=ax3-2x的图象过点(-1,4),则a=________.
解析 由题意知点(-1,4)在函数f(x)=ax3-2x的图象上,所以4=-a+2,则a=-2.
答案 -2
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/考点聚焦突破.tif" \* MERGEFORMAT
考点一 求函数的定义域
【例1】 (1)(2019·湘潭模拟)函数y=+log2(tan x-1)的定义域为________.
(2)若函数y=f(x)的定义域是[0,2],则函数g(x)=的定义域为________.
解析 (1)要使函数y=+log2(tan x-1)有意义,则1-x2≥0,tan x-1>0,且x≠kπ+(k∈Z).
∴-1≤x≤1且+kπ
可得
则函数的定义域为.
(2)因为y=f(x)的定义域为[0,2],
所以要使g(x)有意义应满足解得0≤x<1.
所以g(x)的定义域是[0,1).
答案 (1) (2)[0,1)
规律方法 1.求给定解析式的函数定义域的方法
求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义.
2.求抽象函数定义域的方法
(1)若已知函数f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域可由不等式a≤g(x)≤b求出.
(2)若已知函数f[g(x)]的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.
【训练1】 (1)(2019·深圳模拟)函数y=的定义域为( )
A.(-2,1) B.[-2,1]
C.(0,1) D.(0,1]
(2)设函数f(x)=lg(1-x),则函数f[f(x)]的定义域为( )
A.(-9,+∞) B.(-9,1)
C.[-9,+∞) D.[-9,1)
解析 (1)要使函数有意义,则
解得
∴函数的定义域是(0,1).
(2)易知f[f(x)]=f[lg(1-x)]=lg[1-lg(1-x)],
则解得-9
故f[f(x)]的定义域为(-9,1).
答案 (1)C (2)B
考点二 求函数的解析式
【例2】 (1)已知f=lg x,则f(x)=________;
(2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,则f(x)=________;
(3)已知函数f(x)的定义域为(0,+∞),且f(x)=2f·-1,则f(x)=________.
解析 (1)令t=+1(t>1),则x=,
∴f(t)=lg ,即f(x)=lg (x>1).
(2)设f(x)=ax2+bx+c(a≠0),
由f(0)=2,得c=2,
f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=2ax+a+b=x-1,
所以即∴f(x)=x2-x+2.
(3)在f(x)=2f ·-1中,
将x换成,则换成x,
得f =2f(x)·-1,
由解得f(x)=+.
答案 (1)lg(x>1) (2)x2-x+2 (3)+
规律方法 求函数解析式的常用方法
(1)待定系数法:若已知函数的类型,可用待定系数法.
(2)换元法:已知复合函数f[g(x)]的解析式,可用换元法,此时要注意新元的取值范围.
(3)构造法:已知关于f(x)与f或f(-x)的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f(x).
【训练2】 (1)(2018·成都检测)已知函数f(x)=ax-b(a>0),且f[f(x)]=4x-3,则f(2)=________.
(2)若f(x)满足2f(x)+f(-x)=3x,则f(x)=________.
解析 (1)易知f[f(x)]=a(ax-b)-b=a2x-ab-b,
∴a2x-ab-b=4x-3(a>0),
因此解得
所以f(x)=2x-1,则f(2)=3.
(2)因为2f(x)+f(-x)=3x,①
所以将x用-x替换,得2f(-x)+f(x)=-3x,②
由①②解得f(x)=3x.
答案 (1)3 (2)3x
考点三 分段函数 INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/箭头.TIF" \* MERGEFORMAT 多维探究
角度1 分段函数求值
【例3-1】 (2018·江苏卷)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)=则f[f(15)]的值为________.
解析 因为函数f(x)满足f(x+4)=f(x)(x∈R),所以函数f(x)的最小正周期是4.因为在区间(-2,2]上,f(x)=
所以f(15)=f(-1)=,
因此f[f(15)]=f=cos =.
答案
角度2 分段函数与方程、不等式问题
【例3-2】 (1)设函数f(x)=若f =4,则b=( )
A.1 B. C. D.
(2)(2017·全国Ⅲ卷)设函数f(x)=则满足f(x)+f >1的x的取值范围是________.
解析 (1)f =3×-b=-b,
若-b<1,即b>时,
则f =f =3-b=4,
解得b=,不合题意舍去.
若-b≥1,即b≤,则2-b=4,解得b=.
(2)当x≤0时,f(x)+f =(x+1)+,
原不等式化为2x+>1,解得-
当0
原不等式化为2x+x+>1,该不等式恒成立,
当x>时,f(x)+f =2x+2x-,
又x>时,2x+2x->2+20=1+>1恒成立,
综上可知,不等式的解集为.
答案 (1)D (2)
规律方法 1.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.
2.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.
提醒 当分段函数的自变量范围不确定时,应分类讨论.
【训练3】 (1)(2019·合肥模拟)已知函数f(x)=则f[f(1)]=( )
A.- B.2 C.4 D.11
(2)已知函数f(x)=的值域为R,则实数a的取值范围是________.
解析 (1)由题意知f(1)=12+2=3,
因此f[f(1)]=f(3)=3+=4.
(2)当x≥1时,f(x)=2x-1≥1,
∵函数f(x)=的值域为R,
∴当x<1时,(1-2a)x+3a必须取遍(-∞,1)内的所有实数,则解得0≤a<.
答案 (1)C (2)
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.
2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.
3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法.
4.分段函数问题要用分类讨论思想分段求解.
[易错防范]
1.复合函数f[g(x)]的定义域也是解析式中x的范围,不要和f(x)的定义域相混.
2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A,B若不是数集,则这个映射便不是函数.
3.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:35分钟)
一、选择题
1.函数f(x)=+的定义域为( )
A.[0,2) B.(2,+∞)
C.[0,2)∪(2,+∞) D.(-∞,2)∪(2,+∞)
解析 由题意知得所以函数的定义域为[0,2)∪(2,+∞).
答案 C
2.(2019·郑州调研)如图是张大爷晨练时离家距离(y)与行走时间(x)之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/4S240.TIF" \* MERGEFORMAT
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/4S241.TIF" \* MERGEFORMAT
解析 由y与x的关系知,在中间时间段y值不变,只有D符合题意.
答案 D
3.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )
A.y=x B.y=lg x
C.y=2x D.y=
解析 函数y=10lg x的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lg x的值域为R,排除B;D中y=的定义域、值域均为(0,+∞).
答案 D
4.设函数f(x)=则f(-2)+f(log212)=( )
A.3 B.6 C.9 D.12
解析 根据分段函数的意义,f(-2)=1+log2(2+2)=1+2=3.又log212>1,
∴f(log212)=2(log212)-1=2log26=6,
因此f(-2)+f(log212)=3+6=9.
答案 C
5.(2019·西安联考)已知函数f(x)=-x2+4x,x∈[m,5]的值域是[-5,4],则实数m的取值范围是( )
A.(-∞,-1) B.(-1,2]
C.[-1,2] D.[2,5]
解析 f(x)=-x2+4x=-(x-2)2+4.
当x=2时,f(2)=4.
由f(x)=-x2+4x=-5,得x=5或x=-1.
∴要使f(x)在[m,5]上的值域是[-5,4],则-1≤m≤2.
答案 C
6.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为( )
A.y= B.y=
C.y= D.y=
解析 代表人数与该班人数的关系是除以10的余数大于6,即大于等于7时要增加一名,故y=.
答案 B
7.设f(x)=若f(a)=f(a+1),则f=( )
A.2 B.4 C.6 D.8
解析 由已知得0
所以=2a,解得a=或a=0(舍去),
所以f =f(4)=2(4-1)=6.
答案 C
8.(2019·上饶质检)已知函数f(x)=若a[f(a)-f(-a)]>0,则实数a的取值范围为( )
A.(1,+∞) B.(2,+∞)
C.(-∞,-1)∪(1,+∞) D.(-∞,-2)∪(2,+∞)
解析 当a=0时,显然不成立.
当a>0时,不等式a[f(a)-f(-a)]>0等价于a2-2a>0,解得a>2.
当a<0时,不等式a[f(a)-f(-a)]>0等价于-a2-2a<0,解得a<-2.
综上所述,实数a的取值范围为(-∞,-2)∪(2,+∞).
答案 D
二、填空题
9.函数f(x)=ln+的定义域为________.
解析 要使函数f(x)有意义,
则??0
∴f(x)的定义域为(0,1].
答案 (0,1]
10.已知函数f(x)满足f+f(-x)=2x(x≠0),则f(-2)=________.
解析 令x=2,可得f+f(-2)=4,①
令x=-,可得f(-2)-2f=-1②
联立①②解得f(-2)=.
答案
11.下列四个结论中,正确的命题序号是________.
①f(x)=与g(x)=表示同一函数;
②函数y=f(x)的图象与直线x=1的交点最多有1个;
③f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;
④若f(x)=|x-1|-|x|,则f=0.
解析 对于①,由于函数f(x)=的定义域为{x|x∈R且x≠0},而函数g(x)=的定义域是R,所以二者不是同一函数;对于②,若x=1不是y=f(x)定义域内的值,则直线x=1与y=f(x)的图象没有交点,若x=1是y=f(x)定义域内的值,由函数的定义可知,直线x=1与y=f(x)的图象只有一个交点,即y=f(x)的图象与直线x=1最多有一个交点;对于③,f(x)与g(t)的定义域和对应关系均分别对应相同,所以f(x)与g(t)表示同一函数;对于④,由于f=-=0,所以f=f(0)=1.
答案 ②③
12.设函数f(x)=则使f(x)=的x的集合为________.
解析 由题意知,若x≤0,则2x=,解得x=-1;
若x>0,则|log2x|=,解得x=2或x=2-.
故x的集合为.
答案
能力提升题组
(建议用时:15分钟)
13.具有性质:f =-f(x)的函数,我们称为满足“倒负”变换的函数.下列函数:
①y=x-;②y=ln ;③y=
其中满足“倒负”变换的函数是( )
A.①② B.①③ C.②③ D.①
解析 对于①,f(x)=x-,f=-x=-f(x),满足题意;对于②,f(x)=ln ,则f=ln ≠-f(x),不满足;
对于③,f=
即f=
则f=-f(x).
所以满足“倒负”变换的函数是①③.
答案 B
14.(2019·河南八市联考)设函数f(x)=
若对任意的a∈R都有f[f(a)]=2f(a)成立,则λ的取值范围是( )
A.(0,2] B.[0,2]
C.[2,+∞) D.(-∞,2)
解析 当a≥1时,2a≥2.
∴f[f(a)]=f(2a)=22a=2f(a)恒成立.
当a<1时,f[f(a)]=f(-a+λ)=2f(a)=2λ-a
∴λ-a≥1,即λ≥a+1恒成立,
由题意λ≥(a+1)max,∴λ≥2,
综上,λ的取值范围是[2,+∞).
答案 C
15.已知函数f(x)满足f=log2,则f(x)的解析式是________.
解析 根据题意知x>0,所以f=log2x,则f(x)=log2=-log2x.
答案 f(x)=-log2 x
16.已知函数f(x)=则f[f(x)]<2的解集是________.
解析 当x≥1时,f(x)=x3+x≥2,则f[f(x)]<2解集为?.
当x<1时,f(x)=2ex-1<2.
所以f[f(x)]<2等价于f(x)<1,则2ex-1<1,得x<1-ln 2.
故f[f(x)]<2的解集为(-∞,1-ln 2).
答案 (-∞,1-ln 2)
函数的单调性与最值
最新考纲 1.理解函数的单调性、最大(小)值及其几何意义;2.会运用基本初等函数的图象分析函数的性质.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.函数的单调性
(1)单调函数的定义
增函数 减函数
定义 一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2
当x1
f(x2),那么就说函数f(x)在区间D上是减函数
图象描述 INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/F2A.TIF" \* MERGEFORMAT 自左向右看图象是上升的 INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/F2B.TIF" \* MERGEFORMAT 自左向右看图象是下降的
(2)单调区间的定义
如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.
2.函数的最值
前提 设函数y=f(x)的定义域为I,如果存在实数M满足
条件 (1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M
结论 M为最大值 M为最小值
[微点提醒]
1.函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=的单调性相反.
2.“对勾函数”y=x+(a>0)的单调增区间为(-∞,-),(,+∞);单调减区间是[-,0),(0,].
基 础 自 测
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在区间D上是增函数.( )
(2)函数y=的单调递减区间是(-∞,0)∪(0,+∞).( )
(3)对于函数y=f(x),若f(1)
(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( )
解析 (2)此单调区间不能用并集符号连接,取x1=-1,x2=1,则f(-1)<f(1),故应说成单调递减区间为(-∞,0)和(0,+∞).
(3)应对任意的x1<x2,f(x1)<f(x2)成立才可以.
(4)若f(x)=x,f(x)在[1,+∞)上为增函数,但y=f(x)的单调递增区间是R.
答案 (1)√ (2)× (3)× (4)×
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/教材衍化.TIF" \* MERGEFORMAT
2.(必修1P39B3改编)下列函数中,在区间(0,+∞)内单调递减的是( )
A.y=-x B.y=x2-x
C.y=ln x-x D.y=ex
解析 对于A,y1=在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y=ex在(0,+∞)上是增函数.
答案 A
3.(必修1P31例4改编)函数y=在区间[2,3]上的最大值是________.
解析 函数y=在[2,3]上是减函数,
当x=2时,y=取得最大值=2.
答案 2
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/考题体验.TIF" \* MERGEFORMAT
4.(2018·广东省际名校联考)设函数f(x)在R上为增函数,则下列结论一定正确的是( )
A.y=在R上为减函数
B.y=|f(x)|在R上为增函数
C.y=-在R上为增函数
D.y=-f(x)在R上为减函数
解析 如f(x)=x3,则y=的定义域为(-∞,0)∪(0,+∞),在定义域上无单调性,A错;则y=|f(x)|在R上无单调性,B错;则y=-的定义域为(-∞,0)∪(0,+∞),在定义域上无单调性,C错.
答案 D
5.(2019·石家庄调研)若函数f(x)=(m-1)x+b在R上是增函数,则f(m)与f(1)的大小关系是( )
A. f(m)>f(1) B. f(m)
C. f(m)≥f(1) D. f(m)≤f(1)
解析 因为f(x)=(m-1)x+b在R上是增函数,则m-1>0,所以m>1,所以f(m)>f(1).
答案 A
6.(2017·全国Ⅱ卷)函数f(x)=ln(x2-2x-8)的单调递增区间是( )
A.(-∞,-2) B.(-∞,1)
C.(1,+∞) D.(4,+∞)
解析 由x2-2x-8>0,得x>4或x<-2.
设t=x2-2x-8,则y=ln t为增函数.
要求函数f(x)的单调递增区间,即求函数t=x2-2x-8的单调递增区间.
∵函数t=x2-2x-8的单调递增区间为(4,+∞),
∴函数f(x)的单调递增区间为(4,+∞).
答案 D
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/考点聚焦突破.tif" \* MERGEFORMAT
考点一 确定函数的单调性(区间)
【例1】 (1)(2019·东北三省四校质检)若函数y=log(x2-ax+3a)在区间(2,+∞)上是减函数,则a的取值范围为( )
A.(-∞,-4)∪[2,+∞) B.(-4,4]
C.[-4,4) D.[-4,4]
解析 令t=x2-ax+3a,则y=logt(t>0),
易知t=x2-ax+3a在上单调递减,
在上单调递增.
∵y=log(x2-ax+3a)在区间(2,+∞)上是减函数,
∴t=x2-ax+3a在(2,+∞)上是增函数,且在(2,+∞)上t>0,
∴2≥,且4-2a+3a≥0,∴a∈[-4,4].
答案 D
(2)判断并证明函数f(x)=ax2+(其中1
解 f(x)在[1,2]上单调递增,证明如下:
设1≤x1
由1≤x1
0,2
1
又因为1
得a(x1+x2)->0,
从而f(x2)-f(x1)>0,即f(x2)>f(x1),
故当a∈(1,3)时,f(x)在[1,2]上单调递增.
规律方法 1.(1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).(2)单调区间不能用集合或不等式表达,且图象不连续的单调区间要用“和”“,”连接.
2.(1)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法.
(2)函数y=f[g(x)]的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.
【训练1】 (一题多解)试讨论函数f(x)=(a≠0)在(-1,1)上的单调性.
解 法一 设-1
f(x)=a=a,
f(x1)-f(x2)=a-a=,
由于-1
所以x2-x1>0,x1-1<0,x2-1<0,
故当a>0时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)在(-1,1)上单调递减;
当a<0时,f(x1)-f(x2)<0,
即f(x1)
法二 f′(x)===-.
当a>0时,f′(x)<0,函数f(x)在(-1,1)上单调递减;
当a<0时,f′(x)>0,函数f(x)在(-1,1)上单调递增.
考点二 求函数的最值
【例2】 (1)已知函数f(x)=ax+logax(a>0,且a≠1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为( )
A. B. C.2 D.4
(2)已知函数f(x)=则f[f(-3)]=________,f(x)的最小值是________.
解析 (1)f(x)=ax+logax在[1,2]上是单调函数,
所以f(1)+f(2)=loga2+6,
则a+loga1+a2+loga2=loga2+6,
即(a-2)(a+3)=0,又a>0,所以a=2.
(2)∵f(-3)=lg[(-3)2+1]=lg 10=1,
∴f[f(-3)]=f(1)=0,
当x≥1时,f(x)=x+-3≥2-3,当且仅当x=时,取等号,此时f(x)min=2-3<0;
当x<1时,f(x)=lg(x2+1)≥lg 1=0,当且仅当x=0时,取等号,此时f(x)min=0.
∴f(x)的最小值为2-3.
答案 (1)C (2)0 2-3
规律方法 求函数最值的四种常用方法
(1)单调性法:先确定函数的单调性,再由单调性求最值.
(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.
(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.
(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.
【训练2】 (1)(2019·郑州调研)函数f(x)=-在x∈[1,4]上的最大值为M,最小值为m,则M-m的值是( )
A. B.2 C. D.
(2)(2018·邵阳质检)定义max{a,b,c,}为a,b,c中的最大值,设M=max{2x,2x-3,6-x},则M的最小值是( )
A.2 B.3 C.4 D.6
解析 (1)易知f(x)=-在[1,4]上是增函数,
∴M=f(x)max=f(4)=2-=,m=f(1)=0.
因此M-m=.
(2)画出函数M={2x,2x-3,6-x}的图象(如图),由图可知,函数M在A(2,4)处取得最小值22=6-2=4,
故M的最小值为4.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/4S243.TIF" \* MERGEFORMAT
答案 (1)A (2)C
考点三 函数单调性的应用 INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/箭头.TIF" \* MERGEFORMAT 多维探究
角度1 利用单调性比较大小
【例3-1】 已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f,b=f(2),c=f(3),则a,b,c的大小关系为( )
A.c>a>b B.c>b>a C.a>c>b D.b>a>c
解析 由于函数f(x)的图象向左平移1个单位后得到的图象关于y轴对称,故函数y=f(x)的图象关于直线x=1对称,
所以a=f=f.
当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,等价于函数f(x)在(1,+∞)上单调递减,所以b>a>c.
答案 D
角度2 求解函数不等式
【例3-2】 (2018·全国Ⅰ卷)设函数f(x)=则满足f(x+1)
A.(-∞,-1] B.(0,+∞)
C.(-1,0) D.(-∞,0)
解析 当x≤0时,函数f(x)=2-x是减函数,则f(x)≥f(0)=1.
作出f(x)的大致图象如图所示,结合图象知,要使f(x+1)<f(2x),当且仅当或
解得x<-1或-1≤x<0,即x<0.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/18GW23.TIF" \* MERGEFORMAT
答案 D
角度3 求参数的值或取值范围
【例3-3】 已知f(x)=满足对任意x1≠x2,都有>0成立,那么实数a的取值范围是________.
解析 对任意x1≠x2,都有>0,
所以y=f(x)在(-∞,+∞)上是增函数.
所以解得≤a<2.
故实数a的取值范围是.
答案
规律方法 1.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.
2.(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.
(2)求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f”.
【训练3】 (1)已知奇函数f(x)在R上是增函数,若a=-f,b=f(log2 4.1),c=f(20.8),则a,b,c的大小关系为( )
A.a
C.c
(2)若函数f(x)=-x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是( )
A.(-1,0)∪(0,1) B.(-1,0)∪(0,1]
C.(0,1) D.(0,1]
解析 (1)由f(x)是奇函数,得a=-f=f(log25).
又log25>log24.1>2>20.8,且y=f(x)在R上是增函数,所以a>b>c.
(2)因为f(x)=-x2+2ax=-(x-a)2+a2在[1,2]上为减函数,所以由其图象得a≤1,g(x)=,
g′(x)=-,
要使g(x)在[1,2]上为减函数,需g′(x)<0在[1,2]上恒成立,
故有-a<0,因此a>0,综上可知0
答案 (1)C (2)D
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.利用定义证明或判断函数单调性的步骤:
(1)取值;(2)作差;(3)定号;(4)判断.
2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.
3.求函数最值的常用求法:单调性法、图象法、换元法、利用基本不等式.闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时,最值一定在端点处取到;开区间上的“单峰”函数一定存在最大值(最小值).
[易错防范]
1.区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.
2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.例如,函数f(x)在区间(-1,0)上是减函数,在(0 ,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f(x)=.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:40分钟)
一、选择题
1.函数f(x)=-x+在上的最大值是( )
A. B.- C.-2 D.2
解析 易知f(x)在上是减函数,
∴f(x)max=f(-2)=2-=.
答案 A
2.(2019·广州模拟)下列函数f(x)中,满足“?x1,x2∈(0,+∞)且x1≠x2,(x1-x2)·[f(x1)-f(x2)]<0”的是( )
A.f(x)=2x B.f(x)=|x-1|
C.f(x)=-x D.f(x)=ln(x+1)
解析 由(x1-x2)·[f(x1)-f(x2)]<0可知,f(x)在(0,+∞)上是减函数,A,D选项中,f(x)为增函数;B中,f(x)=|x-1|在(0,+∞)上不单调,对于f(x)=-x,因为y=与y=-x在(0,+∞)上单调递减,因此f(x)在(0,+∞)上是减函数.
答案 C
3.(2019·兰州一模)已知函数f(x)=loga(-x2-2x+3)(a>0且a≠1),若f(0)<0,则此函数的单调递增区间是( )
A.(-∞,-1] B.[-1,+∞)
C.[-1,1) D.(-3,-1]
解析 令g(x)=-x2-2x+3,由题意知g(x)>0,可得-3
答案 C
4.函数y=,x∈(m,n]的最小值为0,则m的取值范围是( )
A.(1,2) B.(-1,2) C.[1,2) D.[-1,2)
解析 函数y===-1在区间(-1,+∞)上是减函数,且f(2)=0,所以n=2.
根据题意,x∈(m,n]时,ymin=0.
∴m的取值范围是[-1,2).
答案 D
5.(2019·蚌埠模拟)已知单调函数f(x),对任意的x∈R都有f[f(x)-2x]=6,则f(2)=( )
A.2 B.4 C.6 D.8
解析 设t=f(x)-2x,则f(t)=6,且f(x)=2x+t,令x=t,则f(t)=2t+t=6,∵f(x)是单调函数,且f(2)=22+2=6,∴t=2,即f(x)=2x+2,则f(2)=4+2=6.
答案 C
二、填空题
6.设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是________.
解析 由题意知g(x)=函数的图象如图所示的实线部分,根据图象,g(x)的递减区间是[0,1).
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/F2.TIF" \* MERGEFORMAT
答案 [0,1)
7.设函数f(x)=在区间(-2,+∞)上是增函数,那么a的取值范围是________.
解析 f(x)==a-,
∵函数f(x)在区间(-2,+∞)上是增函数,
∴即即a≥1.
答案 [1,+∞)
8.(一题多解)(2019·成都诊断)对于任意实数a,b,定义min{a,b}=设函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是______.
解析 法一 在同一坐标系中,
作函数f(x),g(x)图象,
依题意,h(x)的图象如图所示的实线部分.
易知点A(2,1)为图象的最高点,
因此h(x)的最大值为h(2)=1.
INCLUDEPICTURE "../../../../../共享文件/李书营(方正转word)/(完)2020版%20创新设计%20高考总复习%20学生用书%20数学%20人教A版%20理科%20全国%20转word/5S47.TIF" \* MERGEFORMAT
法二 依题意,h(x)=
当0
当x>2时,h(x)=3-x是减函数,
因此h(x)在x=2时取得最大值h(2)=1.
答案 1
三、解答题
9.已知函数f(x)=-(a>0,x>0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(x)在上的值域是,求a的值.
(1)证明 设x2>x1>0,则x2-x1>0,x1x2>0,
∵f(x2)-f(x1)=-=-=>0,∴f(x2)>f(x1),
∴f(x)在(0,+∞)上是增函数.
(2)解 ∵f(x)在上的值域是,
又由(1)得f(x)在上是单调增函数,
∴f=,f(2)=2,易得a=.
10.函数f(x)=loga(1-x)+loga(x+3)(0
(1)求方程f(x)=0的解.
(2)若函数f(x)的最小值为-1,求a的值.
解 (1)由得-3
∴f(x)的定义域为(-3,1).
则f(x)=loga(-x2-2x+3),x∈(-3,1),
令f(x)=0,得-x2-2x+3=1,
解得x=-1±∈(-3,1).
故f(x)=0的解为x=-1±.
(2)由(1)得f(x)=loga[-(x+1)2+4],x∈(-3,1),
由于0<-(x+1)2+4≤4,且a∈(0,1),
∴loga[-(x+1)2+4]≥loga4,
由题意可得loga4=-1,解得a=,满足条件.
所以a的值为.
能力提升题组
(建议用时:20分钟)
11.(2017·全国Ⅰ卷)已知函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )
A.[-2,2] B.[-1,1] C.[0,4] D.[1,3]
解析 ∵f(x)为奇函数,∴f(-x)=-f(x).
∵f(1)=-1,∴f(-1)=-f(1)=1.
故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).
又f(x)在(-∞,+∞)单调递减,
∴-1≤x-2≤1,∴1≤x≤3.
答案 D
12.已知函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定( )
A.有最小值 B.有最大值
C.是减函数 D.是增函数
解析 因为函数f(x)=x2-2ax+a=(x-a)2+a-a2在区间(-∞,1)上有最小值,
所以函数f(x)的对称轴x=a应当位于区间(-∞,1)内,
即a<1,又g(x)==x+-2a,
当a<0时,g(x)=x+-2a在区间(1,+∞)上为增函数,此时,g(x)min>g(1)=1-a>0;
当a=0时,g(x)=x在区间(1,+∞)上为增函数,此时,g(x)min>g(1)=1:
当0
1-a>0,
此时g(x)min>g(1)=1-a;
综上,g(x)在区间(1,+∞)上单调递增.
答案 D
13.已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是________.
解析 二次函数y1=x2-4x+3的对称轴是x=2,所以该函数在(-∞,0]上单调递减,所以x2-4x+3≥3,同样可知函数y2=-x2-2x+3在(0,+∞)上单调递减,所以-x2-2x+3<3,所以f(x)在R上单调递减,所以由f(x+a)>f(2a-x)得到x+a<2a-x,即2x
答案 (-∞,-2)
14.已知函数f(x)=a-.
(1)求f(0);
(2)探究f(x)的单调性,并证明你的结论;
(3)若f(x)为奇函数,求满足f(ax)
解 (1)f(0)=a-=a-1.
(2)f(x)在R上单调递增.证明如下:
∵f(x)的定义域为R,∴任取x1,x2∈R且x1
则f(x1)-f(x2)=a--a+=,
∵y=2x在R上单调递增且x1
∴0<2x1<2x2,∴2x1-2x2<0,2x1+1>0,2x2+1>0.
∴f(x1)-f(x2)<0,即f(x1)
∴f(x)在R上单调递增.
(3)∵f(x)是奇函数,∴f(-x)=-f(x),
即a-=-a+,
解得a=1(或用f(0)=0去解).
∴f(ax)
又∵f(x)在R上单调递增,∴x<2.
∴x的取值范围是(-∞,2).
函数的奇偶性与周期性
最新考纲 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
INCLUDEPICTURE "../知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.函数的奇偶性
奇偶性 定义 图象特点
偶函数 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数 关于y轴对称
奇函数 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数 关于原点对称
2.函数的周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
[微点提醒]
1.(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).
2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
3.函数周期性常用结论
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)=,则T=2a(a>0).
(3)若f(x+a)=-,则T=2a(a>0).
4.对称性的三个常用结论
(1)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.
(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.
(3)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.
基 础 自 测
INCLUDEPICTURE "../疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)函数y=x2在x∈(0,+∞)时是偶函数.( )
(2)若函数f(x)为奇函数,则一定有f(0)=0.( )
(3)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.( )
(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.( )
解析 (1)由于偶函数的定义域关于原点对称,故y=x2在(0,+∞)上不具有奇偶性,(1)错.
(2)由奇函数定义可知,若f(x)为奇函数,其在x=0处有意义时才满足f(0)=0,(2)错.
(3)由周期函数的定义,(3)正确.
(4)由于y=f(x+b)的图象关于(0,0)对称,根据图象平移变换,知y=f(x)的图象关于(b,0)对称,正确.
答案 (1)× (2)× (3)√ (4)√
INCLUDEPICTURE "../教材衍化.TIF" \* MERGEFORMAT
2.(必修1P35例5改编)下列函数中为偶函数的是( )
A.y=x2sin x B.y=x2cos x
C.y=|ln x| D.y=2-x
解析 根据偶函数的定义知偶函数满足f(-x)=f(x)且定义域关于原点对称,A选项为奇函数;B选项为偶函数;C选项定义域为(0,+∞),不具有奇偶性;D选项既不是奇函数,也不是偶函数.
答案 B
3.(必修4P46A10改编)设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=则f=________.
解析 由题意得,f=f=-4×+2=1.
答案 1
INCLUDEPICTURE "../考题体验.TIF" \* MERGEFORMAT
4.(2019·衡水模拟)下列函数既是偶函数又在区间(0,+∞)上单调递增的是( )
A.y=x3 B.y=x
C.y=|x| D.y=|tan x|
解析 对于A,y=x3为奇函数,不符合题意;
对于B,y=x是非奇非偶函数,不符合题意;
对于D,y=|tan x|是偶函数,但在区间(0,+∞)上不单调递增.
答案 C
5.(2017·全国Ⅱ卷)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.
解析 ∵x∈(-∞,0)时,f(x)=2x3+x2,且f(x)在R上为奇函数,
∴f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.
答案 12
6.(2019·上海崇明二模)设f(x)是定义在R上以2为周期的偶函数,当x∈[0,1]时,f(x)=log2(x+1),则当x∈[1,2]时,f(x)=________.
解析 当x∈[1,2]时,x-2∈[-1,0],2-x∈[0,1],
又f(x)在R上是以2为周期的偶函数,
∴f(x)=f(x-2)=f(2-x)=log2(2-x+1)=log2(3-x).
答案 log2(3-x)
INCLUDEPICTURE "../考点聚焦突破.tif" \* MERGEFORMAT
考点一 判断函数的奇偶性
【例1】 判断下列函数的奇偶性:
(1)f(x)=+;
(2)f(x)=;
(3)f(x)=
解 (1)由得x2=3,解得x=±,
即函数f(x)的定义域为{-,},
从而f(x)=+=0.
因此f(-x)=-f(x)且f(-x)=f(x),
∴函数f(x)既是奇函数又是偶函数.
(2)由得定义域为(-1,0)∪(0,1),关于原点对称.
∴x-2<0,∴|x-2|-2=-x,∴f(x)=.
又∵f(-x)==-=-f(x),
∴函数f(x)为奇函数.
(3)显然函数f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称.
∵当x<0时,-x>0,
则f(-x)=-(-x)2-x=-x2-x=-f(x);
当x>0时,-x<0,
则f(-x)=(-x)2-x=x2-x=-f(x);
综上可知:对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.
规律方法 判断函数的奇偶性,其中包括两个必备条件:
(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;
(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.
【训练1】 (1)下列函数中,既不是奇函数,也不是偶函数的是( )
A.y=x+sin 2x B.y=x2-cos x
C.y=2x+ D.y=x2+sin x
(2)已知f(x)=,g(x)=,则下列结论正确的是( )
A.f(x)+g(x)是偶函数 B.f(x)+g(x)是奇函数
C.f(x)g(x)是奇函数 D.f(x)g(x)是偶函数
解析 (1)对于A,定义域为R,f(-x)=-x+sin 2(-x)=-(x+sin 2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+=2x+=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.
(2)令h(x)=f(x)+g(x),
因为f(x)=,g(x)=,
所以h(x)=+=,
定义域为(-∞,0)∪(0,+∞).
因为h(-x)===h(x),
所以h(x)=f(x)+g(x)是偶函数,
令F(x)=f(x)g(x)=,
定义域为(-∞,0)∪(0,+∞).
所以F(-x)==,
因为F(-x)≠F(x)且F(-x)≠-F(x),
所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.
答案 (1)D (2)A
考点二 函数的周期性及其应用
【例2】 (1)(一题多解)(2018·全国Ⅱ卷)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=( )
A.-50 B.0 C.2 D.50
(2)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.
解析 (1)法一 ∵f(x)在R上是奇函数,且f(1-x)=f(1+x).
∴f(x+1)=-f(x-1),即f(x+2)=-f(x).
因此f(x+4)=f(x),则函数f(x)是周期为4的函数,
由于f(1-x)=f(1+x),f(1)=2,
故令x=1,得f(0)=f(2)=0
令x=2,得f(3)=f(-1)=-f(1)=-2,
令x=3,得f(4)=f(-2)=-f(2)=0,
故f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,
所以f(1)+f(2)+f(3)+…+f(50)=12×0+f(1)+f(2)=2.
法二 取一个符合题意的函数f(x)=2sin,则结合该函数的图象易知数列{f(n)}(n∈N*)是以4为周期的周期数列.
故f(1)+f(2)+f(3)+…+f(50)=12×[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)=12×[2+0+(-2)+0]+2+0=2.
(2)因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,
则f(6)=f(4)=f(2)=f(0)=0.
又f(1)=0,∴f(3)=f(5)=f(1)=0,
故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.
答案 (1)C (2)7
规律方法 1.根据函数的周期性和奇偶性求给定区间上的函数值或解析式时,应根据周期性或奇偶性,由待求区间转化到已知区间.
2.若f(x+a)=-f(x)(a是常数,且a≠0),则2a为函数f(x)的一个周期.第(1)题法二是利用周期性构造一个特殊函数,优化了解题过程.
【训练2】 (1)(2018·南充二模)设f(x)是周期为4的奇函数,当0≤x≤1时,f(x)=x(1+x),则f=( )
A.- B.- C. D.
(2)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.
解析 (1)∵f(x)是周期为4的奇函数,
∴f=-f=-f,
又0≤x≤1时,f(x)=x(1+x),
故f=-f=-=-.
(2)∵f(x+4)=f(x-2),
∴f[(x+2)+4]=f[(x+2)-2],即f(x+6)=f(x),
∴f(919)=f(153×6+1)=f(1),
又f(x)在R上是偶函数,
∴f(1)=f(-1)=6-(-1)=6,即f(919)=6.
答案 (1)A (2)6
考点三 函数性质的综合运用 INCLUDEPICTURE "../箭头.TIF" \* MERGEFORMAT 多维探究
角度1 函数单调性与奇偶性
【例3-1】 (2019·石家庄模拟)设f(x)是定义在[-2b,3+b]上的偶函数,且在[-2b,0]上为增函数,则f(x-1)≥f(3)的解集为( )
A.[-3,3] B.[-2,4] C.[-1,5] D.[0,6]
解析 因为f(x)是定义在[-2b,3+b]上的偶函数,
所以有-2b+3+b=0,解得b=3,
由函数f(x)在[-6,0]上为增函数,得f(x)在(0,6]上为减函数.故f(x-1)≥f(3)?f(|x-1|)≥f(3)?|x-1|≤3,故-2≤x≤4.
答案 B
规律方法 1.函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.
2.本题充分利用偶函数的性质f(x)=f(|x|),避免了不必要的讨论,简化了解题过程.
角度2 函数的奇偶性与周期性
【例3-2】 (1)已知定义在R上的奇函数f(x)满足f(x+5)=f(x),且当x∈时,f(x)=x3-3x,则f(2 018)=( )
A.2 B.-18 C.18 D.-2
(2)(2018·洛阳模拟)已知函数y=f(x)满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=,设F(x)=f(x)+f(-x),则F(3)=( )
A. B. C.π D.
解析 (1)∵f(x)满足f(x+5)=f(x),
∴f(x)是周期为5的函数,
∴f(2 018)=f(403×5+3)=f(3)=f(5-2)=f(-2),
∵f(x)是奇函数,且当x∈时,f(x)=x3-3x,
∴f(-2)=-f(2)=-(23-3×2)=-2,故f(2 018)=-2.
(2)由y=f(-x)和y=f(x+2)是偶函数知f(-x)=f(x),且f(x+2)=f(-x+2),则f(x+2)=f(x-2).
∴f(x+4)=f(x),则y=f(x)的周期为4.
所以F(3)=f(3)+f(-3)=2f(3)=2f(-1)=2f(1)=.
答案 (1)D (2)B
规律方法 周期性与奇偶性结合的问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.
【训练3】 (1)(2019·重庆九校模拟)已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=________.
(2)若函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是单调递增函数.如果实数t满足f(ln t)+f≤2f(1),那么t的取值范围是________.
解析 (1)根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x),
又由函数为奇函数,则f(-x)=-f(x),
则有f(x)=-f(6-x)=f(x-12),
则f(x)的最小正周期是12,
故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.
(2)由于函数f(x)是定义在R上的偶函数,
所以f(ln t)=f,
由f(ln t)+f≤2f(1),
得f(ln t)≤f(1).
又函数f(x)在区间[0,+∞)上是单调递增函数,
所以|ln t|≤1,即-1≤ln t≤1,故≤t≤e.
答案 (1)2 (2)
INCLUDEPICTURE "../反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.
2.利用函数奇偶性可以解决以下问题:
(1)求函数值;(2)求解析式;(3)求函数解析式中参数的值;(4)画函数图象,确定函数单调性.
3.在解决具体问题时,要注意结论“若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期”的应用.
[易错防范]
1.f(0)=0既不是f(x)是奇函数的充分条件,也不是必要条件.
2.函数f(x)满足的关系f(a+x)=f(b-x)表明的是函数图象的对称性,函数f(x)满足的关系f(a+x)=f(b+x)(a≠b)表明的是函数的周期性,在使用这两个关系时不要混淆.
INCLUDEPICTURE "../核心素养提升A.tif" \* MERGEFORMAT
数学运算——活用函数性质中“三个二级”结论
数学运算是解决数学问题的基本手段,通过运算能够促进学生数学思维的发展.通过常见的“二维结论”解决数学问题,可优化数学运算的过程,使学生逐步形成规范化、程序化的思维品质,养成一丝不苟、严谨求实的科学精神.
类型1 奇函数的最值性质
已知函数f(x)是定义在区间D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.
【例1】 设函数f(x)=的最大值为M,最小值为m,则M+m=________.
解析 显然函数f(x)的定义域为R,
f(x)==1+,
设g(x)=,则g(-x)=-g(x),
∴g(x)为奇函数,
由奇函数图象的对称性知g(x)max+g(x)min=0,
∴M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.
答案 2
类型2 抽象函数的周期性
(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中一个周期T=2a.
(2)如果f(x+a)=(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
【例2】 已知函数f(x)为定义在R上的奇函数,当x≥0时,有f(x+3)=-f(x),且当x∈(0,3)时,f(x)=x+1,则f(-2 017)+f(2 018)=( )
A.3 B.2 C.1 D.0
解析 因为函数f(x)为定义在R上的奇函数,
所以f(-2 017)=-f(2 017),
因为当x≥0时,有f(x+3)=-f(x),
所以f(x+6)=-f(x+3)=f(x),即当x≥0时,自变量的值每增加6,对应函数值重复出现一次.
又当x∈(0,3)时,f(x)=x+1,
∴f(2 017)=f(336×6+1)=f(1)=2,
f(2 018)=f(336×6+2)=f(2)=3.
故f(-2 017)+f(2 018)=-f(2 017)+3=1.
答案 C
类型3 抽象函数的对称性
已知函数f(x)是定义在R上的函数.
(1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x=对称,特别地,若f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称.
(2)若函数y=f(x)满足f(a+x)+f(a-x)=0,即f(x)=-f(2a-x),则f(x)的图象关于点(a,0)对称.
【例3】 (2018·日照调研)函数y=f(x)对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2 016)+f(2 017)+f(2 018)的值为________.
解析 因为函数y=f(x-1)的图象关于点(1,0)对称,
所以函数y=f(x)的图象关于原点对称,
所以f(x)是R上的奇函数,
f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),故f(x)的周期为4.
所以f(2 017)=f(504×4+1)=f(1)=4,
所以f(2 016)+f(2 018)=-f(2 014)+f(2 014+4)=-f(2 014)+f(2 014)=0,
所以f(2 016)+f(2 017)+f(2 018)=4.
答案 4
INCLUDEPICTURE "../分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:40分钟)
一、选择题
1.下列函数中,既是偶函数,又在(0,1)上单调递增的函数是( )
A.y=|log3x| B.y=x3
C.y=e|x| D.y=cos |x|
解析 对于A选项,函数定义域是(0,+∞),故是非奇非偶函数,显然B项中,y=x3是奇函数.
对于C选项,函数的定义域是R,是偶函数,且当x∈(0,+∞)时,函数是增函数,故在(0,1)上单调递增,正确.
对于D选项,y=cos |x|在(0,1)上单调递减.
答案 C
2.(一题多解)(2019·河北“五个一”名校联盟二模)设函数f(x)是定义在R上的奇函数,且f(x)= 则g(-8)=( )
A.-2 B.-3 C.2 D.3
解析 法一 当x<0时,-x>0,且f(x)为奇函数,
则f(-x)=log3(1-x),所以f(x)=-log3(1-x).
因此g(x)=-log3(1-x),x<0,
故g(-8)=-log39=-2.
法二 由题意知,g(-8)=f(-8)=-f(8)=-log39=-2.
答案 A
3.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(-2,0)时,f(x)=2x2,则f(2 019)等于( )
A.-2 B.2 C.-98 D.98
解析 由f(x+4)=f(x)知,f(x)是周期为4的函数,
f(2 019)=f(504×4+3)=f(3),
又f(x+4)=f(x),∴f(3)=f(-1),
由-1∈(-2,0)得f(-1)=2,
∴f(2 019)=2.
答案 B
4.(一题多解)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )
A.a
C.b
解析 法一 易知g(x)=xf(x)在R上为偶函数,
∵奇函数f(x)在R上是增函数,且f(0)=0.
∴g(x)在(0,+∞)上是增函数.
又3>log25.1>2>20.8,且a=g(-log25.1)=g(log25.1),
∴g(3)>g(log25.1)>g(20.8),则c>a>b.
法二 (特殊化)取f(x)=x,则g(x)=x2为偶函数且在(0,+∞)上单调递增,又3>log25.1>20.8,
从而可得c>a>b.
答案 C
5.(2019·山东、湖北部分重点中学模拟)已知定义在R上的函数f(x)在[1,+∞)上单调递减,且f(x+1)是偶函数,不等式f(m+2)≥f(x-1)对任意的x∈[-1,0]恒成立,则实数m的取值范围是( )
A.[-3,1] B.[-4,2]
C.(-∞,-3]∪[1,+∞) D.(-∞,-4]∪[2,+∞)
解析 因为f(x+1)是偶函数,所以f(-x+1)=f(x+1),所以f(x)的图象关于x=1对称,由f(m+2)≥f(x-1)得|(m+2)-1|≤|(x-1)-1|,即|m+1|≤|x-2|在x∈[-1,0]恒成立,所以|m+1|≤|x-2|min,所以|m+1|≤2,解得-3≤m≤1.
答案 A
二、填空题
6.若函数f(x)=xln(x+)为偶函数,则a=________.
解析 f(x)为偶函数,则y=ln(x+)为奇函数,
所以ln(x+)+ln(-x+)=0,
则ln(a+x2-x2)=0,∴a=1.
答案 1
7.若函数f(x)是定义在R上的周期为2的奇函数,当0
解析 ∵f(x)是定义在R上的奇函数,
∴f(0)=0,
又f(x)在R上的周期为2,
∴f(2)=f(0)=0.
又f=f=-f=-4=-2,
∴f+f(2)=-2.
答案 -2
8.设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是________.
解析 由f(x)=ln(1+|x|)-,知f(x)为R上的偶函数,于是f(x)>f(2x-1)即为f(|x|)>f(|2x-1|).
当x≥0时,f(x)=ln(1+x)-,所以f(x)为[0,+∞)上的增函数,则由f(|x|)>f(|2x-1|)得|x|>|2x-1|,两边平方得3x2-4x+1<0,解得<x<1.
答案
三、解答题
9.已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
解 (1)设x<0,则-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x).
于是x<0时,f(x)=x2+2x=x2+mx,
所以m=2.
(2)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图象知所以1
故实数a的取值范围是(1,3].
10.设函数f(x)是定义在R上的奇函数,对任意实数x都有f=-f成立.
(1)证明y=f(x)是周期函数,并指出其周期;
(2)若f(1)=2,求f(2)+f(3)的值;
(3)若g(x)=x2+ax+3,且y=|f(x)|·g(x)是偶函数,求实数a的值.
解 (1)由f=-f,
且f(-x)=-f(x),知f(3+x)=f=-f=-f(-x)=f(x),
所以y=f(x)是周期函数,且T=3是其一个周期.
(2)因为f(x)为定义在R上的奇函数,所以f(0)=0,
且f(-1)=-f(1)=-2,又T=3是y=f(x)的一个周期,所以f(2)+f(3)=f(-1)+f(0)=-2+0=-2.
(3)因为y=|f(x)|·g(x)是偶函数,
且|f(-x)|=|-f(x)|=|f(x)|,所以|f(x)|为偶函数.
故g(x)=x2+ax+3为偶函数,即g(-x)=g(x)恒成立,
于是(-x)2+a(-x)+3=x2+ax+3恒成立.
于是2ax=0恒成立,所以a=0.
能力提升题组
(建议用时:20分钟)
11.(2019·石家庄模拟)已知奇函数f(x)在(0,+∞)上单调递增,且f(1)=0,若f(x-1)>0,则x的取值范围为( )
A.{x|0
2}
B.{x|x<0或x>2}
C.{x|x<0或x>3}
D.{x|x<-1或x>1}
解析 由题意知函数f(x)在(-∞,0)上单调递增,且f(-1)=0,
不等式f(x-1)>0?f(x-1)>f(1)或f(x-1)>f(-1).
∴x-1>1或0>x-1>-1,
解之得x>2或0
答案 A
12.(2018·合肥调研)定义在R上的奇函数f(x)满足f(x+2)=-f(x),且在[0,1]上是减函数,则有( )
A.f
B.f
C.f
D.f
解析 由题设知:f(x)=-f(x-2)=f(2-x),所以函数f(x)的图象关于直线x=1对称;函数f(x)是奇函数,其图象关于坐标原点对称,由于函数f(x)在[0,1]上是减函数,所以f(x)在[-1,0]上也是减函数,综上函数f(x)在[-1,1]上是减函数;
又f=f=f,-<<,
∴f
答案 C
13.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有
①2是函数f(x)的周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0.
其中所有正确命题的序号是________.
解析 在f(x+1)=f(x-1)中,令x-1=t,
则有f(t+2)=f(t),
因此2是函数f(x)的周期,故①正确;
当x∈[0,1]时,f(x)=2x是增函数,
根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;
由②知,f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1且f(x)是周期为2的周期函数,∴f(x)的最大值是2,最小值是1,故③错误.
答案 ①②
14.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积.
解 (1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4为周期的周期函数,
所以f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函数且f(x+2)=-f(x),
得f[(x-1)+2]=-f(x-1)=f[-(x-1)],
即f(1+x)=f(1-x).
故知函数y=f(x)的图象关于直线x=1对称.
又当0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如下图所示.
INCLUDEPICTURE "../F5.TIF" \* MERGEFORMAT
当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,
则S=4S△OAB=4×=4.
点击下载
同课章节目录
第1章 集合
1.1 集合的含义及其表示
1.2 子集、全集、补集
1.3 交集、并集
第2章 函数
2.1 函数的概念
2.2 函数的简单性质
2.3 映射的概念
第3章 指数函数、对数函数和幂函数
3.1 指数函数
3.2 对数函数
3.3 幂函数
3.4 函数的应用
点击下载
VIP下载