首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
苏教版
选修1
1-1
第三章导数及其应用
本章复习与测试
2019-2020学年苏教版数学选修1-1 第3章《导数及其应用》(5份含答案)
文档属性
名称
2019-2020学年苏教版数学选修1-1 第3章《导数及其应用》(5份含答案)
格式
zip
文件大小
1.9MB
资源类型
教案
版本资源
苏教版
科目
数学
更新时间
2019-10-01 12:08:38
点击下载
文档简介
利用导数研究函数的极值、最值
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考点聚焦突破.tif" \* MERGEFORMAT
考点一 利用导数解决函数的极值问题 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\箭头.TIF" \* MERGEFORMAT 多维探究
角度1 根据函数图象判断函数极值
【例1-1】 已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S425.TIF" \* MERGEFORMAT
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(-2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
解析 由题图可知,当x<-2时,f′(x)>0;当-2
2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.
答案 D
规律方法 由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.
角度2 已知函数求极值
【例1-2】 (2019·哈尔滨模拟)已知函数f(x)=ln x-ax(a∈R).
(1)当a=时,求f(x)的极值;
(2)讨论函数f(x)在定义域内极值点的个数.
解 (1)当a=时,f(x)=ln x-x,函数的定义域为(0,+∞)且f′(x)=-=,
令f′(x)=0,得x=2,
于是当x变化时,f′(x),f(x)的变化情况如下表.
x (0,2) 2 (2,+∞)
f′(x) + 0 -
f(x) ln 2-1
故f(x)在定义域上的极大值为f(x)极大值=f(2)=ln 2-1,无极小值.
(2)由(1)知,函数的定义域为(0,+∞),
f′(x)=-a=(x>0).
当a≤0时,f′(x)>0在(0,+∞)上恒成立,
即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;
当a>0时,当x∈时,f′(x)>0,
当x∈时,f′(x)<0,
故函数在x=处有极大值.
综上可知,当a≤0时,函数f(x)无极值点,
当a>0时,函数y=f(x)有一个极大值点,且为x=.
规律方法 运用导数求可导函数y=f(x)的极值的一般步骤:(1)先求函数y=f(x)的定义域,再求其导数f′(x);(2)求方程f′(x)=0的根;(3)检查导数f′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.
角度3 已知函数的极(最)值求参数的取值
【例1-3】 已知函数f(x)=ln x.
(1)求f(x)图象的过点P(0,-1)的切线方程;
(2)若函数g(x)=f(x)-mx+存在两个极值点x1,x2,求m的取值范围.
解 (1)f(x)的定义域为(0,+∞),且f′(x)=.
设切点坐标为(x0,ln x0),则切线方程为y=x+ln x0-1.
把点P(0,-1)代入切线方程,得ln x0=0,∴x0=1.
∴过点P(0,-1)的切线方程为y=x-1.
(2)因为g(x)=f(x)-mx+=ln x-mx+(x>0),
所以g′(x)=-m-==-,
令h(x)=mx2-x+m,
要使g(x)存在两个极值点x1,x2,
则方程mx2-x+m=0有两个不相等的正数根x1,x2.
故只需满足即可,解得0
规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.
【训练1】 (1)(2017·全国Ⅱ卷)若x=-2是函数f(x)=(x2+ax-1)·ex-1的极值点,则f(x)的极小值为( )
A.-1 B.-2e-3 C.5e-3 D.1
解析 f′(x)=[x2+(a+2)x+a-1]·ex-1,
则f′(-2)=[4-2(a+2)+a-1]·e-3=0?a=-1,
则f(x)=(x2-x-1)·ex-1,f′(x)=(x2+x-2)·ex-1,
令f′(x)=0,得x=-2或x=1,
当x<-2或x>1时,f′(x)>0,
当-2
所以x=1是函数f(x)的极小值点,
则f(x)极小值为f(1)=-1.
答案 A
(2)(2018·北京卷)设函数f(x)=[ax2-(4a+1)x+4a+3]ex.
①若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;
②若f(x)在x=2处取得极小值,求a的取值范围.
解 ①因为f(x)=[ax2-(4a+1)x+4a+3]ex,
所以f′(x)=[ax2-(2a+1)x+2]ex.
f′(1)=(1-a)e.
由题设知f′(1)=0,即(1-a)e=0,解得a=1.
此时f(1)=3e≠0.
所以a的值为1.
②f′(x)=[ax2-(2a+1)x+2]ex=(ax-1)(x-2)ex.
若a>,则当x∈时,f′(x)<0;
当x∈(2,+∞)时,f′(x)>0.
所以f(x)在x=2处取得极小值.
若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0,
所以f′(x)>0.所以2不是f(x)的极小值点.
综上可知,a的取值范围是.
考点二 利用导数求函数的最值
【例2】 (2019·广东五校联考)已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.
解 (1)易知f(x)的定义域为(0,+∞),
当a=-1时,f(x)=-x+ln x,f′(x)=-1+=,
令f′(x)=0,得x=1.
当0
0;当x>1时,f′(x)<0.
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.
∴f(x)max=f(1)=-1.
∴当a=-1时,函数f(x)在(0,+∞)上的最大值为-1.
(2)f′(x)=a+,x∈(0,e],∈.
①若a≥-,则f′(x)≥0,从而f(x)在(0,e]上是增函数,
∴f(x)max=f(e)=ae+1≥0,不合题意.
②若a<-,令f′(x)>0得a+>0,结合x∈(0,e],解得0
令f′(x)<0得a+<0,结合x∈(0,e],解得-
从而f(x)在上为增函数,在上为减函数,
∴f(x)max=f=-1+ln.
令-1+ln=-3,得ln=-2,
即a=-e2.
∵-e2<-,∴a=-e2为所求.
故实数a的值为-e2.
规律方法 1.利用导数求函数f(x)在[a,b]上的最值的一般步骤:
(1)求函数在(a,b)内的极值;(2)求函数在区间端点处的函数值f(a),f(b);(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.
2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.
【训练2】 (2019·合肥质检)已知函数f(x)=excos x-x.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间上的最大值和最小值.
解 (1)∵f(x)=ex·cos x-x,∴f(0)=1,
f′(x)=ex(cos x-sin x)-1,∴f′(0)=0,
∴y=f(x)在(0,f(0))处的切线方程为y-1=0·(x-0),
即y=1.
(2)f′(x)=ex(cos x-sin x)-1,令g(x)=f′(x),
则g′(x)=-2exsin x≤0在上恒成立,
且仅在x=0处等号成立,
∴g(x)在上单调递减,
∴g(x)≤g(0)=0,∴f′(x)≤0且仅在x=0处等号成立,
∴f(x)在上单调递减,
∴f(x)max=f(0)=1,f(x)min=f=-.
考点三 利用导数求解最优化问题
【例3】 在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升).
(1)求y关于v的函数关系式;
(2)若c≤v≤15(c>0),求当下潜速度v取什么值时,总用氧量最少.
解 (1)由题意,下潜用时(单位时间),用氧量为×=+(升),水底作业时的用氧量为10×0.9=9(升),返回水面用时=(单位时间),用氧量为×1.5=(升),
因此总用氧量y=++9(v>0).
(2)y′=-=,令y′=0得v=10,
当0
当v>10时,y′>0,函数单调递增.
若c<10 ,函数在(c,10)上单调递减,在(10,15)上单调递增,
∴当v=10时,总用氧量最少.
若c≥10,则y在[c,15]上单调递增,
∴当v=c时,这时总用氧量最少.
规律方法 1.利用导数解决生活中优化问题的一般步骤:
(1)设自变量、因变量,建立函数关系式y=f(x),并确定其定义域;
(2)求函数的导数f′(x),解方程f′(x)=0;
(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;
(4)回归实际问题作答.
2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.
【训练3】 (2017·全国Ⅰ卷)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为______.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\17GS4.tif" \* MERGEFORMAT
解析 由题意,连接OD,交BC与点G,
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\17GS59.tif" \* MERGEFORMAT
由题意,OD⊥BC,设OG=x,则BC=2x,DG=5-x,三棱锥的高
h===,
S△ABC=·(2x)2·sin 60°=3x2,
则三棱锥的体积V=S△ABC·h=x2·=·,
令f(x)=25x4-10x5,x∈,
则f′(x)=100x3-50x4,
令f′(x)=0得x=2,当x∈(0,2)时,f′(x)>0,f(x)单调递增;
当x∈时,f′(x)<0,f(x)单调递减,
故当x=2时,f(x)取得最大值80,
则V≤×=4.
∴体积最大值为4 cm3.
答案 4
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.求函数的极值、最值,通常转化为对函数的单调性的分析讨论,所以,研究函数的单调性、极值、最值归根结底都是对函数单调性的研究.
2.研究函数的性质借助数形结合的方法有助于问题的解决.函数的单调性常借助导函数的图象分析导数的正负;函数的极值常借助导函数的图象分析导函数的变号零点;函数的最值常借助原函数图象来分析最值点.
3.解函数的优化问题关键是从实际问题中抽象出函数关系,并求出函数的最值.
[易错防范]
1.求函数的极值、函数的优化问题易忽视函数的定义域.
2.已知极值点求参数时,由极值点处导数为0求出参数后,易忽视对极值点两侧导数异号的检验.
3.由极值、最值求参数时,易忽视参数应满足的前提范围(如定义域),导致出现了增解.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:40分钟)
一、选择题
1.函数y=f(x)导函数的图象如图所示,则下列说法错误的是( )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\5S87.TIF" \* MERGEFORMAT
A.(-1,3)为函数y=f(x)的递增区间
B.(3,5)为函数y=f(x)的递减区间
C.函数y=f(x)在x=0处取得极大值
D.函数y=f(x)在x=5处取得极小值
解析 由函数y=f(x)导函数的图象可知,f(x)的单调递减区间是(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以f(x)在x=-1,5取得极小值,在x=3取得极大值,故选项C错误.
答案 C
2.设a∈R,若函数y=ex+ax有大于零的极值点,则( )
A.a<-1 B.a>-1
C.a>- D.a<-
解析 因为y=ex+ax,所以y′=ex+a.
又函数y=ex+ax有大于零的极值点,
则方程y′=ex+a=0有大于零的解,
当x>0时,-ex<-1,所以a=-ex<-1.
答案 A
3.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于( )
A.11或18 B.11
C.18 D.17或18
解析 ∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,∴f(1)=10,且f′(1)=0,又f′(x)=3x2+2ax+b,
∴解得或
而当时,函数在x=1处无极值,故舍去.
∴f(x)=x3+4x2-11x+16,∴f(2)=18.
答案 C
4.函数f(x)=3x2+ln x-2x的极值点的个数是( )
A.0 B.1 C.2 D.无数
解析 函数定义域为(0,+∞),
且f′(x)=6x+-2=,
由于x>0,g(x)=6x2-2x+1的Δ=-20<0,
所以g(x)>0恒成立,故f′(x)>0恒成立,
即f(x)在定义域上单调递增,无极值点.
答案 A
5.(2019·安庆二模)已知函数f(x)=2ef′(e)ln x-(e是自然对数的底数),则f(x)的极大值为( )
A.2e-1 B.- C.1 D.2ln 2
解析 由题意知,f′(x)=-,
∴f′(e)=2f′(e)-,则f′(e)=.
因此f′(x)=-,令f′(x)=0,得x=2e.
∴f(x) 在(0,2e)上单调递增,在(2e,+∞)上单调递减.
∴f(x)在x=2e处取极大值f(2e)=2ln(2e)-2=2ln 2.
答案 D
二、填空题
6.函数f(x)=xe-x,x∈[0,4]的最大值是________.
解析 f′(x)=e-x-x·e-x=e-x(1-x),
令f′(x)=0,得x=1.
又f(0)=0,f(4)=,f(1)=e-1=,
∴f(1)=为最大值.
答案
7.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m∈[-1,1],则f(m)的最小值是________.
解析 f′(x)=-3x2+2ax,由f(x)在x=2处取得极值知f′(2)=0,即-3×4+2a×2=0,故a=3.
由此可得f(x)=-x3+3x2-4.
f′(x)=-3x2+6x,由此可得f(x)在(-1,0)上单调递减,在(0,1)上单调递增,
∴当m∈[-1,1]时,f(m)min=f(0)=-4.
答案 -4
8.若函数f(x)=-x2+x+1在区间上有极值点,则实数a的取值范围是________.
解析 函数f(x)在区间上有极值点等价于f′(x)=0有2个不相等的实根且在内有根,由f′(x)=0有2个不相等的实根,得a<-2或a>2.由f′(x)=0在内有根,得a=x+在内有解,又x+∈,所以2≤a<.
综上,a的取值范围是.
答案
三、解答题
9.设函数f(x)=aln x-bx2(x>0),若函数f(x)在x=1处与直线y=-相切.
(1)求实数a,b的值;
(2)求函数f(x)在上的最大值.
解 (1)由f(x)=aln x-bx2(x>0),得f′(x)=-2bx,
∵函数f(x)在x=1处与直线y=-相切,
∴解得
(2)由(1)知,f(x)=ln x-x2,
则f′(x)=-x=,
当≤x≤e时,令f′(x)>0,得≤x<1,
令f′(x)<0,得1
∴f(x)在上单调递增;在(1,e]上单调递减,
∴f(x)max=f(1)=-.
10.(2018·天津卷选编)设函数f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.
(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若d=3,求f(x)的极值.
解 (1)由已知,得f(x)=x(x-1)(x+1)=x3-x,
故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1,
又因为曲线y=f(x)在点(0,f(0))处的切线方程为
y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.
(2)由已知得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t-9)x-t+9t2.
故f′(x)=3x2-6t2x+3t-9.
令f′(x)=0,解得x=t2-,或x=t2+.
当x变化时,f′(x),f(x)的变化情况如下表:
所以函数f(x)的极大值为f(t2-)=(-)3-9×
(-)=6;函数f(x)的极小值为f(t2+)=()3-9×=-6.
能力提升题组
(建议用时:20分钟)
11.(2019·郑州质检)若函数y=f(x)存在n-1(n∈N*)个极值点,则称y=f(x)为n折函数,例如f(x)=x2为2折函数.已知函数f(x)=(x+1)ex-x(x+2)2,则f(x)为( )
A.2折函数 B.3折函数
C.4折函数 D.5折函数
解析 f′(x)=(x+2)ex-(x+2)(3x+2)=(x+2)(ex-3x-2),令f′(x)=0,得x=-2或ex=3x+2.
易知x=-2是f(x)的一个极值点,
又ex=3x+2,结合函数图象,y=ex与y=3x+2有两个交点.又e-2≠3(-2)+2=-4.
∴函数y=f(x)有3个极值点,则f(x)为4折函数.
答案 C
12.若函数f(x)=2x2-ln x在其定义域的一个子区间(k-1,k+1)内存在最小值,则实数k的取值范围是________.
解析 因为f(x)的定义域为(0,+∞),又因为f′(x)=4x-,所以由f′(x)=0解得x=,由题意得解得1≤k<.
答案
13.传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm且以每秒1 cm等速率缩短,而长度以每秒20 cm等速率增长.已知神针的底面半径只能从12 cm缩到4 cm,且知在这段变形过程中,当底面半径为10 cm时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm.
解析 设神针原来的长度为a cm,t秒时神针的体积为V(t) cm3,则V(t)=π(12-t)2·(a+20t),其中0≤t≤8,所以V′(t)=[-2(12-t)(a+20t)+(12-t)2·20]π.
因为当底面半径为10 cm时其体积最大,所以10=12-t,解得t=2,此时V′(2)=0,解得a=60,所以V(t)=π(12-t)2·(60+20t),其中0≤t≤8.
V′(t)=60π(12-t)(2-t),当t∈(0,2)时,V′(t)>0,当t∈(2,8)时,V′(t)<0,从而V(t)在(0,2)上单调递增,在(2,8)上单调递减,V(0)=8 640π,V(8)=3 520π,所以当t=8时,V(t)有最小值3 520π,此时金箍棒的底面半径为4 cm.
答案 4
14.设f(x)=xln x-ax2+(2a-1)x(常数a>0).
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.
解 (1)由f′(x)=ln x-2ax+2a,
可得g(x)=ln x-2ax+2a,x∈(0,+∞).
所以g′(x)=-2a=.
又a>0,
当x∈时,g′(x)>0,函数g(x)单调递增,
当x∈时,g′(x)<0,函数g(x)单调递减.
∴函数y=g(x)的单调递增区间为,单调递减区间为.
(2)由(1)知,f′(1)=0.
①当0
1,由(1)知f′(x)在内单调递增,可得当x∈(0,1)时,f′(x)<0,当x∈时,f′(x)>0.
所以f(x)在(0,1)内单调递减,在内单调递增.
所以f(x)在x=1处取得极小值,不合题意.
②当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意.
③当a>时,0<<1,当x∈时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.
所以f(x)在x=1处取极大值,符合题意.
综上可知,实数a的取值范围为.
变化率与导数、导数的计算
最新考纲 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=,y=x2,y=x3,y=的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y=f(ax+b)的复合函数)的导数.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.函数y=f(x)在x=x0处的导数
(1)定义:称函数y=f(x)在x=x0处的瞬时变化率 =
为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)= =.
(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).
2.函数y=f(x)的导函数
如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,函数f′(x)= 称为函数y=f(x)在开区间内的导函数.
3.基本初等函数的导数公式
基本初等函数 导函数
f(x)=c(c为常数) f′(x)=0
f(x)=xα(α∈Q*) f′(x)=αxα-1
f(x)=sin x f′(x)=cos__x
f(x)=cos x f′(x)=-sin__x
f(x)=ex f′(x)=ex
f(x)=ax(a>0) f′(x)=axln__a
f(x)=ln x f′(x)=
f(x)=logax(a>0,a≠1) f′(x)=
4.导数的运算法则
若f′(x),g′(x)存在,则有:
(1)[f(x)±g(x)]′=f′(x)±g′(x);
(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
(3)′=(g(x)≠0).
5.复合函数的导数
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′.
[微点提醒]
1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,且(f(x0))′=0.
2.′=-.
3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.
4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.
基 础 自 测
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( )
(2)函数f(x)=sin(-x)的导数f′(x)=cos x.( )
(3)求f′(x0)时,可先求f(x0),再求f′(x0).( )
(4)曲线的切线与曲线不一定只有一个公共点.( )
解析 (1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错.
(2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错.
(3)求f′(x0)时,应先求f′(x),再代入求值,(3)错.
答案 (1)× (2)× (3)× (4)√
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\教材衍化.TIF" \* MERGEFORMAT
2.(选修2-2P19B2改编)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是( )
A.-9 B.-3 C.9 D.15
解析 因为y=x3+11,所以y′=3x2,所以y′|x=1=3,所以曲线y=x3+11在点P(1,12)处的切线方程为y-12=3(x-1).令x=0,得y=9.
答案 C
3.(选修2-2P3例题改编)在高台跳水运动中,t s时运动员相对于水面的高度(单位:m)是h(t)=-4.9t2+6.5t+10,则运动员的速度v=________ m/s,加速度a=______ m/s2.
解析 v=h′(t)=-9.8t+6.5,a=v′(t)=-9.8.
答案 -9.8t+6.5 -9.8
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考题体验.TIF" \* MERGEFORMAT
4.(2019·保定质检)已知函数f(x)=x(2 018+ln x),若f′(x0)=2 019,则x0等于( )
A.e2 B.1 C.ln 2 D.e
解析 f′(x)=2 018+ln x+x×=2 019+ln x.
由f′(x0)=2 019,得2 019+ln x0=2 019,则ln x0=0,解得x0=1.
答案 B
5.(2018·天津卷)已知函数f(x)=exln x,f′(x)为f(x)的导函数,则f′(1)的值为________.
解析 由题意得f′(x)=exln x+ex·,则f′(1)=e.
答案 e
6.(2017·全国Ⅰ卷)曲线y=x2+在点(1,2)处的切线方程为________.
解析 设y=f(x),则f′(x)=2x-,
所以f′(1)=2-1=1,
所以在(1,2)处的切线方程为y-2=1×(x-1),
即y=x+1.
答案 y=x+1
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考点聚焦突破.tif" \* MERGEFORMAT
考点一 导数的运算 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\箭头.TIF" \* MERGEFORMAT 多维探究
角度1 根据求导法则求函数的导数
【例1-1】 分别求下列函数的导数:
(1)y=exln x;
(2)y=x;
(3)f(x)=ln .
解 (1)y′=(ex)′ln x+ex(ln x)′=exln x+=ex.
(2)因为y=x3+1+,所以y′=3x2-.
(3)因为y=ln =ln,
所以y′=··(1+2x)′=.
角度2 抽象函数的导数计算
【例1-2】 (2019·福州联考)已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(1)+ln ,则f(1)=( )
A.-e B.2 C.-2 D.e
解析 由已知得f′(x)=2f′(1)-,令x=1得f′(1)=2f′(1)-1,解得f′(1)=1,则f(1)=2f′(1)=2.
答案 B
规律方法 1.求函数的导数要准确地把函数分割成基本初等函数的和、差、积、商,再利用运算法则求导.
2.复合函数求导,应由外到内逐层求导,必要时要进行换元.
3.抽象函数求导,恰当赋值是关键,然后活用方程思想求解.
【训练1】 (1)若y=x-cos sin ,则y′=________.
(2)已知f(x)=x2+2xf′(1),则f′(0)=________.
解析 (1)因为y=x-sin x,
所以y′=′=x′-′=1-cos x.
(2)∵f′(x)=2x+2f′(1),
∴f′(1)=2+2f′(1),即f′(1)=-2.
∴f′(x)=2x-4,∴f′(0)=-4.
答案 (1)1-cos x (2)-4
考点二 导数的几何意义 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\箭头.TIF" \* MERGEFORMAT 多维探究
角度1 求切线方程
【例2-1】 (2018·全国Ⅰ卷)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )
A.y=-2x B.y=-x
C.y=2x D.y=x
解析 因为函数f(x)=x3+(a-1)x2+ax为奇函数,所以a-1=0,则a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.
答案 D
角度2 求切点坐标
【例2-2】 (1)(2019·郑州月考)已知曲线y=-3ln x的一条切线的斜率为,则切点的横坐标为( )
A.3 B.2 C.1 D.
(2)设曲线y=ex在点(0,1)处的切线与曲线y=(x>0)上点P处的切线垂直,则P的坐标为________.
解析 (1)设切点的横坐标为x0(x0>0),
∵曲线y=-3ln x的一条切线的斜率为,
∴y′=-,即-=,
解得x0=3或x0=-2(舍去,不符合题意),即切点的横坐标为3.
(2)∵函数y=ex的导函数为y′=ex,
∴曲线y=ex在点(0,1)处的切线的斜率k1=e0=1.
设P(x0,y0)(x0>0),∵函数y=的导函数为y′=-,∴曲线y=(x>0)在点P处的切线的斜率k2=-eq \f(1,x),
由题意知k1k2=-1,即1·eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,x)))=-1,解得x=1,又x0>0,∴x0=1.
又∵点P在曲线y=(x>0)上,∴y0=1,故点P的坐标为(1,1).
答案 (1)A (2)(1,1)
角度3 求参数的值或取值范围
【例2-3】 (1)函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是( )
A.(-∞,2] B.(-∞,2)
C.(2,+∞) D.(0,+∞)
(2)(2019·东北三省四校联考)已知曲线f(x)=x++b(x≠0)在点(1,f(1))处的切线方程为y=2x+5,则a-b=________.
解析 (1)由题意知f′(x)=2在(0,+∞)上有解.
∴f′(x)=+a=2在(0,+∞)上有解,则a=2-.
因为x>0,所以2-<2,所以a的取值范围是(-∞,2).
(2)f′(x)=1-,∴f′(1)=1-a,
又f(1)=1+a+b,∴曲线在(1,f(1))处的切线方程为y-(1+a+b)=(1-a)(x-1),即y=(1-a)x+2a+b,
根据题意有解得
∴a-b=-1-7=-8.
答案 (1)B (2)-8
规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y=f(x)在点P(x0,f(x0))处的切线方程是y-f(x0)=f′(x0)(x-x0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.
2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.
【训练2】 (1)(2018·东莞二调)设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,则点P的坐标为( )
A.(0,0) B.(1,-1)
C.(-1,1) D.(1,-1)或(-1,1)
(2)(2018·全国Ⅱ卷)曲线y=2ln(x+1)在点(0,0)处的切线方程为________________.
解析 (1)由f(x)=x3+ax2,得f′(x)=3x2+2ax.
根据题意可得f′(x0)=-1,f(x0)=-x0,
可列方程组eq \b\lc\{(\a\vs4\al\co1(x+ax=-x0, ①,3x+2ax0=-1, ②))
解得或
当x0=1时,f(x0)=-1,
当x0=-1时,f(x0)=1.
∴点P的坐标为(1,-1)或(-1,1).
(2)由题意得y′=.在点(0,0)处切线斜率k=y′|x=0=2.∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y-0=2(x-0),即y=2x.
答案 (1)D (2)y=2x
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.
2.求曲线的切线方程要注意分清已知点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.
3.处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解.
[易错防范]
1.求导常见易错点:①公式(xn)′=nxn-1与(ax)′=axln a相互混淆;②公式中“+”“-”号记混,如出现如下错误:′=,(cos x)′=sin x;③复合函数求导分不清内、外层函数.
2.求切线方程时,把“过点切线”问题误认为“在点切线”问题.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:35分钟)
一、选择题
1.下列求导数的运算中错误的是( )
A.(3x)′=3xln 3 B.(x2ln x)′=2xln x+x
C.′= D.(sin x·cos x)′=cos 2x
解析 因为′=,C项错误.
答案 C
2.(2018·日照质检)已知f(x)=xln x,若f′(x0)=2,则x0等于( )
A.e2 B.e C. D.ln 2
解析 f(x)的定义域为(0,+∞),f′(x)=ln x+1,由f′(x0)=2,即ln x0+1=2,解得x0=e.
答案 B
3.函数y=x3的图象在原点处的切线方程为( )
A.y=x B.x=0
C.y=0 D.不存在
解析 函数y=x3的导数为y′=3x2,则在原点处的切线斜率为0,所以在原点处的切线方程为y-0=0(x-0),即y=0.
答案 C
4.一质点沿直线运动,如果由始点起经过t秒后的位移为s=t3-3t2+8t,那么速度为零的时刻是( )
A.1秒末 B.1秒末和2秒末
C.4秒末 D.2秒末和4秒末
解析 s′(t)=t2-6t+8,由导数的定义知v=s′(t),
令s′(t)=0,得t=2或4,
即2秒末和4秒末的速度为零.
答案 D
5.(2019·合肥一模)函数f(x)=x-g(x)的图象在点x=2处的切线方程是y=-x-1,则g(2)+g′(2)=( )
A.7 B.4 C.0 D.-4
解析 ∵f(x)=x-g(x),∴f′(x)=1-g′(x),又由题意知f(2)=-3,f′(2)=-1,∴g(2)+g′(2)=2-f(2)+1-f′(2)=7.
答案 A
6.已知e为自然对数的底数,曲线y=aex+x在点(1,ae+1)处的切线与直线2ex-y-1=0平行,则实数a=( )
A. B. C. D.
解析 ∵y′=aex+1,∴在点(1,ae+1)处的切线的斜率为y′|x=1=ae+1,又切线与直线2ex-y-1=0平行,∴ae+1=2e,解得a=.
答案 B
7.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是( )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S424.TIF" \* MERGEFORMAT
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S424A.TIF" \* MERGEFORMAT
解析 由y=f′(x)的图象知,y=f′(x)在(0,+∞)上是单调递减的,说明函数y=f(x)的切线的斜率在(0,+∞)上也是单调递减的,故可排除A,C;
又由图象知y=f′(x)与y=g′(x)的图象在x=x0处相交,说明y=f(x)与y=g(x)的图象在x=x0处的切线的斜率相同,故可排除B.故选D.
答案 D
8.(2019·广州调研)已知直线y=kx-2与曲线y=xln x相切,则实数k的值为( )
A.ln 2 B.1
C.1-ln 2 D.1+ln 2
解析 由y=xln x得y′=ln x+1,设切点为(x0,y0),则k=ln x0+1,∵切点(x0,y0)(x0>0)既在曲线y=xln x上又在直线y=kx-2上,∴∴kx0-2=x0ln x0,∴k=ln x0+,则ln x0+=ln x0+1,∴x0=2,∴k=ln 2+1.
答案 D
二、填空题
9.已知曲线f(x)=2x2+1在点M(x0,f(x0))处的瞬时变化率为-8,则点M的坐标为________.
解析 由题意得f′(x)=4x,令4x0=-8,则x0=-2,
∴f(x0)=9,∴点M的坐标是(-2,9).
答案 (-2,9)
10.已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为________.
解析 f(1)=a,切点为(1,a).f′(x)=a-,则切线的斜率为f′(1)=a-1,切线方程为:y-a=(a-1)(x-1),令x=0得出y=1,故l在y轴上的截距为1.
答案 1
11.已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.
解析 因为f(x)=x2+3xf′(2)+ln x,
所以f′(x)=2x+3f′(2)+,
所以f′(2)=4+3f′(2)+=3f′(2)+,
所以f′(2)=-.
答案 -
12.已知函数y=f(x)的图象在点(2,f(2))处的切线方程为y=2x-1,则曲线g(x)=x2+f(x)在点(2,g(2))处的切线方程为________________.
解析 由题意,知f(2)=2×2-1=3,∴g(2)=4+3=7,
∵g′(x)=2x+f′(x),f′(2)=2,∴g′(2)=2×2+2=6,
∴曲线g(x)=x2+f(x)在点(2,g(2))处的切线方程为y-7=6(x-2),即6x-y-5=0.
答案 6x-y-5=0
能力提升题组
(建议用时:15分钟)
13.(2018·深圳二模)设函数f(x)=x++b,若曲线y=f(x)在点(a,f(a))处的切线经过坐标原点,则ab=( )
A.1 B.0 C.-1 D.-2
解析 由题意可得,f(a)=a++b,f′(x)=1-,所以f′(a)=1-,故切线方程是y-a--b=(x-a),将(0,0)代入得-a--b=(-a),故b=-,故ab=-2.
答案 D
14.(2019·西安一模)定义1:若函数f(x)在区间D上可导,即f′(x)存在,且导函数f′(x)在区间D上也可导,则称函数f(x)在区间D上存在二阶导数,记作f″(x)=[f′(x)]′.
定义2:若函数f(x)在区间D上的二阶导数恒为正,即f″(x)>0恒成立,则称函数f(x)在区间D上为凹函数.已知函数f(x)=x3-x2+1在区间D上为凹函数,则x的取值范围是________.
解析 因为f(x)=x3-x2+1,因为f′(x)=3x2-3x,f″(x)=6x-3,令f″(x)>0,解得x>,故x的取值范围是.
答案
15.函数g(x)=ln x图象上一点P到直线y=x的最短距离为________.
解析 设点(x0,ln x0)是曲线g(x)=ln x的切线中与直线y=x平行的直线的切点,因为g′(x)=(ln x)′=,则1=,∴x0=1,则切点坐标为(1,0),
∴最短距离为(1,0)到直线y=x的距离,
即为=.
答案
16.若函数f(x)=x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.
解析 ∵f(x)=x2-ax+ln x,定义域为(0,+∞),
∴f′(x)=x-a+.
∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,
即x+-a=0有解,
∴a=x+≥2(当且仅当x=1时取等号).
答案 [2,+∞)
导数与函数的零点
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考点聚焦突破.tif" \* MERGEFORMAT
考点一 判断零点的个数
【例1】 (2019·合肥质检)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=-4ln x的零点个数.
解 (1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},
∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0.
∴f(x)min=f(1)=-4a=-4,a=1.
故函数f(x)的解析式为f(x)=x2-2x-3.
(2)由(1)知g(x)=-4ln x=x--4ln x-2,
∴g(x)的定义域为(0,+∞),g′(x)=1+-=,令g′(x)=0,得x1=1,x2=3.
当x变化时,g′(x),g(x)的取值变化情况如下表:
x (0,1) 1 (1,3) 3 (3,+∞)
g′(x) + 0 - 0 +
g(x) 极大值 极小值
当0
当x>3时,g(e5)=e5--20-2>25-1-22=9>0.
又因为g(x)在(3,+∞)上单调递增,
因而g(x)在(3,+∞)上只有1个零点,
故g(x)仅有1个零点.
规律方法 利用导数确定函数零点或方程根个数的常用方法
(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.
(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.
【训练1】 已知函数f(x)=ex-1,g(x)=+x,其中e是自然对数的底数,e=2.718 28….
(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;
(2)求方程f(x)=g(x)的根的个数,并说明理由.
(1)证明 由题意可得h(x)=f(x)-g(x)=ex-1--x,
所以h(1)=e-3<0,h(2)=e2-3->0,
所以h(1)h(2)<0,
所以函数h(x)在区间(1,2)上有零点.
(2)解 由(1)可知h(x)=f(x)-g(x)=ex-1--x.
由g(x)=+x知x∈[0,+∞),
而h(0)=0,则x=0为h(x)的一个零点.
又h(x)在(1,2)内有零点,
因此h(x)在[0,+∞)上至少有两个零点.
h′(x)=ex-x--1,记φ(x)=ex-x--1,
则φ′(x)=ex+x-.
当x∈(0,+∞)时,φ′(x)>0,因此φ(x)在(0,+∞)上单调递增,
易知φ(x)在(0,+∞)内至多有一个零点,
即h(x)在[0,+∞)内至多有两个零点,
则h(x)在[0,+∞)上有且只有两个零点,
所以方程f(x)=g(x)的根的个数为2.
考点二 已知函数零点个数求参数的取值范围
【例2】 函数f(x)=ax+xln x在x=1处取得极值.
(1)求f(x)的单调区间;
(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.
解 (1)函数f(x)=ax+xln x的定义域为(0,+∞).
f′(x)=a+ln x+1,
因为f′(1)=a+1=0,解得a=-1,
当a=-1时,f(x)=-x+xln x,
即f′(x)=ln x,令f′(x)>0,解得x>1;
令f′(x)<0,解得0
所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).
(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.
由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\L176.tif" \* MERGEFORMAT
由题意得,m+1>-1,
即m>-2,①
当0
e时,f(x)>0.
当x>0且x→0时,f(x)→0;
当x→+∞时,显然f(x)→+∞.
由图象可知,m+1<0,即m<-1,②
由①②可得-2
所以m的取值范围是(-2,-1).
规律方法 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
【训练2】 已知函数f(x)=ex+ax-a(a∈R且a≠0).
(1)若f(0)=2,求实数a的值,并求此时f(x)在[-2,1]上的最小值;
(2)若函数f(x)不存在零点,求实数a的取值范围.
解 (1)由题意知,函数f(x)的定义域为R,
又f(0)=1-a=2,得a=-1,
所以f(x)=ex-x+1,求导得f′(x)=ex-1.
易知f(x)在[-2,0]上单调递减,在[0,1]上单调递增,
所以当x=0时,f(x)在[-2,1]上取得最小值2.
(2)由(1)知f′(x)=ex+a,由于ex>0,
①当a>0时,f′(x)>0,f(x)在R上是增函数,
当x>1时,f(x)=ex+a(x-1)>0;
当x<0时,取x=-,
则f<1+a=-a<0.
所以函数f(x)存在零点,不满足题意.
②当a<0时,令f′(x)=0,得x=ln(-a).
在(-∞,ln(-a))上,f′(x)<0,f(x)单调递减,
在(ln (-a),+∞)上,f′(x)>0,f(x)单调递增,
所以当x=ln(-a)时,f(x)取最小值.
函数f(x)不存在零点,等价于f(ln(-a))=eln(-a)+aln(-a)-a=-2a+aln(-a)>0,解得-e2
综上所述,所求实数a的取值范围是(-e2,0).
考点三 函数零点的综合问题
【例3】 设函数f(x)=e2x-aln x.
(1)讨论f(x)的导函数f′(x)零点的个数;
(2)证明:当a>0时,f(x)≥2a+aln .
(1)解 f(x)的定义域为(0,+∞),f′(x)=2e2x-(x>0).
当a≤0时,f′(x)>0,f′(x)没有零点;
当a>0时,因为y=e2x单调递增,y=-单调递增,
所以f′(x)在(0,+∞)上单调递增.
又f′(a)>0,假设存在b满足0
故当a>0时,f′(x)存在唯一零点.
(2)证明 由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,
当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.
故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
所以当x=x0时,f(x)取得最小值,最小值为f(x0).
由于2e2x0-=0,
所以f(x0)=+2ax0+aln ≥2a+aln .
故当a>0时,f(x)≥2a+aln .
规律方法 1.在(1)中,当a>0时,f′(x)在(0,+∞)上单调递增,从而f′(x)在
(0,+∞)上至多有一个零点,问题的关键是找到b,使f′(b)<0.
2.由(1)知,函数f′(x)存在唯一零点x0,则f(x0)为函数的最小值,从而把问题转化为证明f(x0)≥2a+aln .
【训练3】 (2018·东北三省四校联考)已知函数f(x)=ln x-x-m(m<-2,m为常数).
(1)求函数f(x)在的最小值;
(2)设x1,x2是函数f(x)的两个零点,且x1
(1)解 f(x)=ln x-x-m(m<-2)的定义域为(0,+∞),且f′(x)==0,∴x=1.
当x∈(0,1)时,f′(x)>0,所以y=f(x)在(0,1)递增;
当x∈(1,+∞)时,f′(x)<0,所以y=f(x)在(1,+∞)上递减.
且f=-1--m,f(e)=1-e-m,
因为f-f(e)=-2-+e>0,
函数f(x)在的最小值为1-e-m.
(2)证明 由(1)知x1,x2满足ln x-x-m=0,且0
1,
ln x1-x1-m=ln x2-x2-m=0,
由题意可知ln x2-x2=m<-2
又由(1)可知f(x)=ln x-x在(1,+∞)递减,故x2>2,
所以0
则f(x1)-f=ln x1-x1-
=ln x2-x2-
=-x2++2ln x2.
令g(x)=-x++2ln x(x>2),
则g′(x)=-1-+==≤0,
当x>2时,g(x)是减函数,
所以g(x)
因-ln 4=ln>ln=ln=ln=ln>ln 1=0,
∴g(x)<0,
所以当x>2时,f(x1)-f<0,
即f(x1)
因为0
所以x1<,故x1x2<1.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.解决函数y=f(x)的零点问题,可通过求导判断函数图象的位置、形状和发展趋势,观察图象与x轴的位置关系,利用数形结合的思想方法判断函数的零点是否存在及零点的个数等.
2.通过等价变形,可将“函数F(x)=f(x)-g(x)的零点”与“方程f(x)=g(x)的解”问题相互转化.
[易错防范]
函数y=f(x)在某一区间(a,b)上存在零点,必要时要由函数零点存在定理作为保证.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:35分钟)
一、选择题
1.已知函数f(x)的定义域为[-1,4],部分对应值如下表:
x -1 0 2 3 4
f(x) 1 2 0 2 0
f(x)的导函数y=f′(x)的图象如图所示.当1
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\F102.TIF" \* MERGEFORMAT
A.1 B.2 C.3 D.4
解析 根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\F103.TIF" \* MERGEFORMAT
由于f(0)=f(3)=2,1
答案 D
2.(2019·武汉调研)已知f(x)=ex-ax2.
命题p:?a≥1,y=f(x)有三个零点,
命题q:?a∈R,f(x)≤0恒成立.
则下列命题为真命题的是( )
A.p∧q B.(綈p)∧(綈q)
C.(綈p)∧q D.p∧(綈q)
解析 对于命题p:当a=1时,f(x)=ex-x2,在同一坐标系中作出y=ex,y=x2的图象(图略),由图可知y=ex与y=x2的图象有1个交点,∴f(x)=ex-x2有1个零点,故命题p为假命题,∵f(0)=1,∴命题q显然为假命题.故(綈p)∧(綈q)为真.
答案 B
二、填空题
3.直线x=t分别与函数f(x)=ex+1的图象及g(x)=2x-1的图象相交于点A和点B,则|AB|的最小值为________.
解析 由题意得,|AB|=|et+1-(2t-1)|
=|et-2t+2|,令h(t)=et-2t+2,
则h′(t)=et-2,所以h(t)在(-∞,ln 2)上单调递减,
在(ln 2,+∞)上单调递增,
所以h(t)min=h(ln 2)=4-2ln 2>0,
即|AB|的最小值是4-2ln 2.
答案 4-2ln 2
4.若函数f(x)=+1(a<0)没有零点,则实数a的取值范围为________.
解析 f′(x)==(a<0).
当x<2时,f′(x)<0;当x>2时,f′(x)>0,
∴当x=2时,f(x)有极小值f(2)=+1.
若使函数f(x)没有零点,当且仅当f(2)=+1>0,
解之得a>-e2,因此-e2
答案 (-e2,0)
三、解答题
5.(2019·保定调研)已知函数f(x)=x3-x2-ax-2的图象过点A.
(1)求函数f(x)的单调递增区间;
(2)若函数g(x)=f(x)-2m+3有3个零点,求m的取值范围.
解 (1)因为函数f(x)=x3-x2-ax-2的图象过点A,
所以-4a-4a-2=,解得a=2,
即f(x)=x3-x2-2x-2,
所以f′(x)=x2-x-2.
由f′(x)>0,得x<-1或x>2.
所以函数f(x)的单调递增区间是(-∞,-1),(2,+∞).
(2)由(1)知f(x)极大值=f(-1)=--+2-2=-,
f(x)极小值=f(2)=-2-4-2=-,
由数形结合,可知要使函数g(x)=f(x)-2m+3有三个零点,
则-<2m-3<-,
解得-
所以m的取值范围为.
6.设函数f(x)=ln x+(m>0),讨论函数g(x)=f′(x)-零点的个数.
解 函数g(x)=f′(x)-=--(x>0),
令g(x)=0,得m=-x3+x(x>0).
设h(x)=-x3+x(x>0),
所以h′(x)=-x2+1=-(x-1)(x+1).
当x∈(0,1)时,h′(x)>0,此时h(x)在(0,1)内单调递增;当x∈(1,+∞)时,h′(x)<0,此时h(x)在(1,+∞)内单调递减.
所以当x=1时,h(x)取得极大值h(1)=-+1=.
令h(x)=0,即-x3+x=0,解得x=0(舍去)或x=.
作出函数h(x)的大致图象(如图),结合图象知:
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S356.TIF" \* MERGEFORMAT
①当m>时,函数y=m和函数y=h(x)的图象无交点.
②当m=时,函数y=m和函数y=h(x)的图象有且仅有一个交点.
③当0
综上所述,当m>时,函数g(x)无零点;当m=时,函数g(x)有且仅有一个零点;当0
能力提升题组
(建议用时:25分钟)
7.(2018·江苏卷改编)若函数f(x)=2x3-ax2+1(a∈R)在区间(0,+∞)内有且只有一个零点,求f(x)在[-1,1]上的最大值与最小值的和.
解 f′(x)=6x2-2ax=2x(3x-a)(a∈R),
当a≤0时,f′(x)>0在(0,+∞)上恒成立,
则f(x)在(0,+∞)上单调递增,又f(0)=1,
所以此时f(x)在(0,+∞)内无零点,不满足题意.
当a>0时,由f′(x)>0得x>,由f′(x)<0得0
则f(x)在上单调递减,在上单调递增,又f(x)在(0,+∞)内有且只有一个零点,
所以f=-+1=0,得a=3,
所以f(x)=2x3-3x2+1,则f′(x)=6x(x-1),
当x∈(-1,0)时,f′(x)>0,f(x)单调递增,
当x∈(0,1)时,f′(x)<0,f(x)单调递减.
则f(x)max=f(0)=1,f(-1)=-4,f(1)=0,
则f(x)min=-4,所以f(x)在[-1,1]上的最大值与最小值的和为-3.
8.已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的单调递增区间;
(2)当0<-
(3)当a=-1时,试推断方程|f(x)|=+是否有实数根.
解 (1)由已知可知函数f(x)的定义域为{x|x>0},
当a=-1时,f(x)=-x+ln x(x>0),f′(x)=(x>0);
当0
0;当x>1时,f′(x)<0.
所以f(x)的单调递增区间为(0,1).
(2)因为f′(x)=a+(x>0),令f′(x)=0,解得x=-;
由f′(x)>0,解得0
从而f(x)的单调递增区间为,递减区间为,
所以,f(x)max=f=-1+ln=-3.
解得a=-e2.
(3)由(1)知当a=-1时,f(x)max=f(1)=-1,
所以|f(x)|≥1.
令g(x)=+,则g′(x)=.
当0
0;
当x>e时,g′(x)<0.
从而g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.
所以g(x)max=g(e)=+<1,
所以,|f(x)|>g(x),即|f(x)|>+,
所以,方程|f(x)|=+没有实数根.
导数在不等式中的应用
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考点聚焦突破.tif" \* MERGEFORMAT
考点一 构造函数证明不等式
【例1】 已知函数f(x)=1-,g(x)=x-ln x.
(1)证明:g(x)≥1;
(2)证明:(x-ln x)f(x)>1-.
证明 (1)由题意得g′(x)=(x>0),
当0
1时,g′(x)>0,
即g(x)在(0,1)上是减函数,在(1,+∞)上是增函数.
所以g(x)≥g(1)=1,得证.
(2)由f(x)=1-,得f′(x)=,
所以当0
2时,f′(x)>0,
即f(x)在(0,2)上是减函数,在(2,+∞)上是增函数,
所以f(x)≥f(2)=1-(当且仅当x=2时取等号).①
又由(1)知x-ln x≥1(当且仅当x=1时取等号),②
且①②等号不同时取得,
所以(x-ln x)f(x)>1-.
规律方法 1.证明不等式的基本方法:
(1)利用单调性:若f(x)在[a,b]上是增函数,则①?x∈[a,b],有f(a)≤f(x)≤f(b),②?x1,x2∈[a,b],且x1
(2)利用最值:若f(x)在某个范围D内有最大值M(或最小值m),则?x∈D,有f(x)≤M(或f(x)≥m).
2.证明f(x)
【训练1】 已知函数f(x)=在点(-1,f(-1))处的切线方程为x+y+3=0.
(1)求函数f(x)的解析式;
(2)设g(x)=ln x,求证:g(x)≥f(x)在[1,+∞)上恒成立.
(1)解 将x=-1代入切线方程得y=-2,
所以f(-1)==-2,化简得b-a=-4.①
f′(x)=,
f′(-1)==-1.②
联立①②,解得a=2,b=-2.所以f(x)=.
(2)证明 由题意知要证ln x≥在[1,+∞)上恒成立,
即证明(x2+1)ln x≥2x-2,x2ln x+ln x-2x+2≥0在[1,+∞)上恒成立.
设h(x)=x2ln x+ln x-2x+2,则h′(x)=2xln x+x+-2,
因为x≥1,所以2xln x≥0,x+≥2·≥2(当且仅当x=1时等号成立),即h′(x)≥0,
所以h(x)在[1,+∞)上单调递增,h(x)≥h(1)=0,
所以g(x)≥f(x)在[1,+∞)上恒成立.
考点二 利用“若f(x)min>g(x)max,则f(x)>g(x)”证明不等式
【例2】 已知函数f(x)=xln x-ax.
(1)当a=-1时,求函数f(x)在(0,+∞)上的最值;
(2)证明:对一切x∈(0,+∞),都有ln x+1>-成立.
(1)解 函数f(x)=xln x-ax的定义域为(0,+∞).
当a=-1时,f(x)=xln x+x,f′(x)=ln x+2.
由f′(x)=0,得x=.
当x∈时,f′(x)<0;当x>时,f′(x)>0.
所以f(x)在上单调递减,在上单调递增.
因此f(x)在x=处取得最小值,即f(x)min=f=-,但f(x)在(0,+∞)上无最大值.
(2)证明 当x>0时,ln x+1>-等价于x(ln x+1)>-.
由(1)知a=-1时,f(x)=xln x+x的最小值是-,当且仅当x=时取等号.
设G(x)=-,x∈(0,+∞),
则G′(x)=,易知G(x)max=G(1)=-,
当且仅当x=1时取到,从而可知对一切x∈(0,+∞),都有f(x)>G(x),即ln x+1>-.
规律方法 1.在证明不等式中,若无法转化为一个函数的最值问题,则可考虑转化为两个函数的最值问题.
2.在证明过程中,等价转化是关键,此处f(x)min>g(x)max恒成立.从而f(x)>g(x),但此处f(x)与g(x)取到最值的条件不是同一个“x的值”.
【训练2】 已知三次函数f(x)的导函数f′(x)=-3x2+3且f(0)=-1,g(x)=xln x+(a≥1).
(1)求f(x)的极值;
(2)求证:对任意x1,x2∈(0,+∞),都有f(x1)≤g(x2).
(1)解 依题意得f(x)=-x3+3x-1,f′(x)=-3x2+3=-3(x+1)(x-1),
知f(x)在(-∞,-1)和(1,+∞)上是减函数,在(-1,1)上是增函数,
所以f(x)极小值=f(-1)=-3,f(x)极大值=f(1)=1.
(2)证明 易得x>0时,f(x)最大值=1,
由a≥1知,g(x)≥xln x+(x>0),
令h(x)=xln x+(x>0),
则h′(x)=ln x+1-=ln x+,
注意到h′(1)=0,当x>1时,h′(x)>0;
当0
即h(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
h(x)最小值=h(1)=1,即g(x)最小值=1.
综上知对任意x1,x2∈(0,+∞),都有f(x1)≤g(x2).
考点三 不等式恒成立或有解问题 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\箭头.TIF" \* MERGEFORMAT 多维探究
角度1 不等式恒成立求参数
【例3-1】 已知函数f(x)=(x≠0).
(1)判断函数f(x)在区间上的单调性;
(2)若f(x)
解 (1)f′(x)=,
令g(x)=xcos x-sin x,x∈,则g′(x)=-xsin x,
显然,当x∈时,g′(x)=-xsin x<0,即函数g(x)在区间上单调递减,且g(0)=0.
从而g(x)在区间上恒小于零,
所以f′(x)在区间上恒小于零,
所以函数f(x)在区间上单调递减.
(2)不等式f(x)
令φ(x)=sin x-ax,x∈,
则φ′(x)=cos x-a,且φ(0)=0.
当a≥1时,在区间上φ′(x)<0,即函数φ(x)单调递减,
所以φ(x)<φ(0)=0,故sin x-ax<0恒成立.
当0
当x∈(0,x0)时,φ′(x)>0,故φ(x)在区间(0,x0)上单调递增,且φ(0)=0,
从而φ(x)在区间(0,x0)上大于零,这与sin x-ax<0恒成立相矛盾.
当a≤0时,在区间上φ′(x)>0,即函数φ(x)单调递增,且φ(0)=0,得sin x-ax>0恒成立,这与sin x-ax<0恒成立相矛盾.
故实数a的最小值为1.
规律方法 1.破解此类题需“一形一分类”,“一形”是指会结合函数的图象,对函数进行求导,然后判断其极值,从而得到含有参数的方程组,解方程组,即可求出参数的值;“一分类”是指对不等式恒成立问题,常需对参数进行分类讨论,求出参数的取值范围.
2.利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如a≥f(x)(或a≤f(x))的形式,通过求函数y=f(x)的最值求得参数范围.
【训练3】 (2018·大同模拟)已知函数f(x)=.
(1)若函数f(x)在区间上存在极值,求正实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥恒成立,求实数k的取值范围.
解 (1)函数的定义域为(0,+∞),
f′(x)==-,
令f′(x)=0,得x=1.
当x∈(0,1)时,f′(x)>0,f(x)是增函数;
当x∈(1,+∞)时,f′(x)<0,f(x)是减函数;
所以x=1为函数f(x)的极大值点,且是唯一极值点,
所以0
故
(2)当x≥1时,k≤恒成立,
令g(x)=(x≥1),
则g′(x)==.
再令h(x)=x-ln x(x≥1),则h′(x)=1-≥0,
所以h(x)≥h(1)=1,所以g′(x)>0,
所以g(x)是增函数,所以g(x)≥g(1)=2,
故k≤2,即实数k的取值范围是(-∞,2].
角度2 不等式能成立求参数的取值范围
【例3-2】 已知函数f(x)=x2-(2a+1)x+aln x(a∈R).
(1)若f(x)在区间[1,2]上是单调函数,求实数a的取值范围;
(2)函数g(x)=(1-a)x,若?x0∈[1,e]使得f(x0)≥g(x0)成立,求实数a的取值范围.
解 (1)f′(x)=,当导函数f′(x)的零点x=a落在区间(1,2)内时,函数f(x)在区间[1,2]上就不是单调函数,即a?(1,2),
所以实数a的取值范围是(-∞,1]∪[2,+∞).
(2)由题意知,不等式f(x)≥g(x)在区间[1,e]上有解,
即x2-2x+a(ln x-x)≥0在区间[1,e]上有解.
因为当x∈[1,e]时,ln x≤1≤x(不同时取等号),x-ln x>0,
所以a≤在区间[1,e]上有解.
令h(x)=,则h′(x)=.
因为x∈[1,e],所以x+2>2≥2ln x,
所以h′(x)≥0,h(x)在[1,e]上单调递增,
所以x∈[1,e]时,h(x)max=h(e)=,
所以a≤,
所以实数a的取值范围是.
规律方法 1.含参数的能成立(存在型)问题的解题方法
a≥f(x)在x∈D上能成立,则a≥f(x)min;
a≤f(x)在x∈D上能成立,则a≤f(x)max.
2.含全称、存在量词不等式能成立问题
(1)存在x1∈A,任意x2∈B使f(x1)≥g(x2)成立,则f(x)max≥g(x)max;(2)任意x1∈A,存在x2∈B,使f(x1)≥g(x2)成立,则f(x)min≥g(x)min.
【训练4】 已知函数f(x)=m-2ln x(m∈R),g(x)=-,若至少存在一个x0∈[1,e],使得f(x0)
解 依题意,不等式f(x)
∴mx<2ln x在区间[1,e]上有解,即<能成立.
令h(x)=,x∈[1,e],则h′(x)=.
当x∈[1,e]时,h′(x)≥0,h(x)在[1,e]上是增函数,
∴h(x)的最大值为h(e)=.
由题意<,即m<时,f(x)
∴实数m的取值范围是.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.证明不等式的关键是构造函数,将问题转化为研究函数的单调性、最值问题.
2.恒(能)成立问题的转化策略.若f(x)在区间D上有最值,则
(1)恒成立:?x∈D,f(x)>0?f(x)min>0;
?x∈D,f(x)<0?f(x)max<0.
(2)能成立:?x∈D,f(x)>0?f(x)max>0;
?x∈D,f(x)<0?f(x)min<0.
[易错防范]
1.证明不等式,特别是含两个变量的不等式时,要注意合理的构造函数.
2.恒成立与能成立问题,要注意理解“任意”与“存在”的不同含义,要注意区分转化成的最值问题的异同.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\核心素养提升A.tif" \* MERGEFORMAT
逻辑推理——两个经典不等式的活用
逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程.
(1)对数形式:x≥1+ln x(x>0),当且仅当x=1时,等号成立.
(2)指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.
进一步可得到一组不等式链:ex>x+1>x>1+ln x(x>0,且x≠1).
【例1】 (1)已知函数f(x)=,则y=f(x)的图象大致为( )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\W7.tif" \* MERGEFORMAT
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\W8.tif" \* MERGEFORMAT
解析 因为f(x)的定义域为
即{x|x>-1,且x≠0},所以排除选项D.
当x>0时,由经典不等式x>1+ln x(x>0),
以x+1代替x,得x>ln(x+1)(x>-1,且x≠0),
所以ln(x+1)-x<0(x>-1,且x≠0),即x>0或-1
答案 B
(2)已知函数f(x)=ex,x∈R.证明:曲线y=f(x)与曲线y=x2+x+1有唯一公共点.
证明 令g(x)=f(x)-=ex-x2-x-1,x∈R,
则g′(x)=ex-x-1,
由经典不等式ex≥x+1恒成立可知,g′(x)≥0恒成立,
所以g(x)在R上为单调递增函数,且g(0)=0.
所以函数g(x)有唯一零点,即两曲线有唯一公共点.
【例2】 (2017·全国Ⅲ卷改编)已知函数f(x)=x-1-aln x.
(1)若f(x)≥0,求a的值;
(2)证明:对于任意正整数n,…
(1)解 f(x)的定义域为(0,+∞),
①若a≤0,因为f=-+aln 2<0,所以不满足题意.
②若a>0,由f′(x)=1-=知,
当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0;
所以f(x)在(0,a)单调递减,在(a,+∞)单调递增,
故x=a是f(x)在(0,+∞)的唯一最小值点.
因为f(1)=0,所以当且仅当a=1时,f(x)≥0,故a=1.
(2)证明 由(1)知当x∈(1,+∞)时,x-1-ln x>0.
令x=1+,得ln<.
从而ln+ln+…+ln<++…+=1-<1.
故…
【例3】 设函数f(x)=ln x-x+1.
(1)讨论f(x)的单调性;
(2)求证:当x∈(1,+∞)时,1<
(1)解 由题设知,f(x)的定义域为(0,+∞),
f′(x)=-1,令f′(x)=0,解得x=1.
当0
0,f(x)在(0,1)上单调递增;
当x>1时,f′(x)<0,f(x)在(1,+∞)上单调递减.
(2)证明 由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0.
所以当x≠1时,ln x
故当x∈(1,+∞)时,ln x
1.①
因此ln <-1,即ln x>,
故当x∈(1,+∞)时恒有1<
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:35分钟)
一、选择题
1.(2019·汕头一模)函数f(x)=ln x+a的导数为f′(x),若方程f′(x)=f(x)的根x0小于1,则实数a的取值范围为( )
A.(1,+∞) B.(0,1)
C.(1,) D.(1,)
解析 由函数f(x)=ln x+a可得f′(x)=,
∵x0使f′(x)=f(x)成立,∴=ln x0+a,
又0
1,ln x0<0,∴a=-ln x0>1.
答案 A
2.(2019·南昌调研)已知a为常数,函数f(x)=x(ln x-ax)有两个极值点x1,x2(x1
A.f(x1)>0,f(x2)>-
B.f(x1)<0,f(x2)<-
C.f(x1)>0,f(x2)<-
D.f(x1)<0,f(x2)>-
解析 f′(x)=ln x-2ax+1,依题意知f′(x)=0有两个不等实根x1,x2,
即曲线y=1+ln x与直线y=2ax有两个不同交点,如图.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S355.TIF" \* MERGEFORMAT
由直线y=x是曲线y=1+ln x的切线,
可知:0<2a<1,0
由0
∵当x1
0,
∴f(x2)>f(1)=-a>-.
答案 D
二、填空题
3.若对任意a,b满足0
解析 ∵0
∴<,
令y=,x∈(0,t),则函数在(0,t)上单调递增,
故y′=>0,解得0
故t的最大值是e.
答案 e
4.函数f(x)=x-2sin x,对任意的x1,x2∈[0,π],恒有|f(x1)-f(x2)|≤M,则M的最小值为________.
解析 ∵f(x)=x-2sin x,∴f′(x)=1-2cos x,
∴当0
当
0,f(x)单调递增;
∴当x=时,f(x)有极小值,即最小值,
且f(x)min=f=-2sin =-.
又f(0)=0,f(π)=π,∴f(x)max=π.
由题意得|f(x1)-f(x2)|≤M等价于M≥|f(x)max-f(x)min|=π-=+.
∴M的最小值为+.
答案 +
三、解答题
5.已知f(x)=(1-x)ex-1.
(1)求函数f(x)的最大值;
(2)设g(x)=,x>-1且x≠0,证明:g(x)<1.
(1)解 f′(x)=-xex.
当x∈(-∞,0)时,f′(x)>0,f(x)单调递增;
当x∈(0,+∞)时,f′(x)<0,f(x)单调递减.
所以f(x)的最大值为f(0)=0.
(2)证明 由(1)知,当x>0时,f(x)<0,g(x)<0<1.
当-1
x.
设h(x)=f(x)-x,则h′(x)=-xex-1.
当x∈(-1,0)时,0<-x<1,0
则0<-xex<1,从而当x∈(-1,0)时,h′(x)<0,
h(x)在(-1,0)上单调递减.
当-1
h(0)=0,即g(x)<1.
综上,当x>-1且x≠0时总有g(x)<1.
6.已知函数f(x)=x3-ax2+10.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)在区间[1,2]内至少存在一个实数x,使得f(x)<0成立,求实数a的取值范围.
解 (1)当a=1时,f(x)=x3-x2+10,
所以f′(x)=3x2-2x,所以k=f′(2)=8.
又f(2)=14,所以切线方程为y=8x-2.
(2)由已知得:a>=x+至少有一个实数x使之成立,即a>.
设g(x)=x+(1≤x≤2),则g′(x)=1-,
因为1≤x≤2,所以g′(x)<0.
所以g(x)在[1,2]上是减函数,
所以g(x)min=g(2)=,a>,
即a的取值范围是.
能力提升题组
(建议用时:25分钟)
7.(2019·安徽江南十校联考)已知函数f(x)=xln x(x>0).
(1)求f(x)的单调区间和极值;
(2)若对任意x∈(0,+∞),f(x)≥恒成立,求实数m的最大值.
解 (1)由f(x)=xln x(x>0),得f′(x)=1+ln x,
令f′(x)>0,得x>;令f′(x)<0,得0
∴f(x)的单调增区间是,单调减区间是.
故f(x)在x=处有极小值f=-,无极大值.
(2)由f(x)≥及f(x)=xln x,得m≤恒成立,
问题转化为m≤.
令g(x)=(x>0),则g′(x)=,
由g′(x)>0?x>1,由g′(x)<0?0
所以g(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以g(x)min=g(1)=4,
因此m≤4,所以m的最大值是4.
8.已知函数f(x)=ex-1-x-ax2.
(1)当a=0时,求证:f(x)≥0;
(2)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围;
(3)若x>0,证明(ex-1)ln(x+1)>x2.
(1)证明 当a=0时,f(x)=ex-1-x,f′(x)=ex-1.
当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,
f′(x)>0.
故f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
f(x)min=f(0)=0,∴f(x)≥0.
(2)解 f′(x)=ex-1-2ax,令h(x)=ex-1-2ax,
则h′(x)=ex-2a.
①当2a≤1,即a≤时,在[0,+∞)上,h′(x)≥0,h(x)单调递增,
h(x)≥h(0),即f′(x)≥f′(0)=0,
∴f(x)在[0,+∞) 上为增函数,∴f(x)≥f(0)=0,
∴当a≤时满足条件.
②当2a>1,即a>时,令h′(x)=0,解得x=ln (2a),
在[0,ln (2a))上,h′(x)<0,h(x)单调递减,
∴当x∈(0,ln (2a))时,有h(x)
∴f(x)在区间(0,ln (2a))上为减函数,∴f(x)
综上,实数a的取值范围为.
(3)证明 由(2)得,当a=,x>0时,ex>1+x+,
即ex-1>x+,
欲证不等式(ex-1)ln(x+1)>x2,
只需证ln(x+1)>.
设F(x)=ln(x+1)-,
则F′(x)=-=.
∵当x>0时,F′(x)>0恒成立,且F(0)=0,
∴F(x)>0恒成立.∴原不等式得证.
导数在研究函数中的应用
最新考纲 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;
4.会利用导数解决某些简单的实际问题.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.函数的单调性与导数的关系
函数y=f(x)在某个区间内可导,则:
(1)若f′(x)>0,则f(x)在这个区间内单调递增;
(2)若f′(x)<0,则f(x)在这个区间内单调递减;
(3)若f′(x)=0,则f(x)在这个区间内是常数函数.
2.函数的极值与导数
条件 f′(x0)=0
x0附近的左侧f′(x)>0,右侧f′(x)<0 x0附近的左侧f′(x)<0,右侧f′(x)>0
图象 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\LA2.TIF" \* MERGEFORMAT 形如山峰 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\LA3.TIF" \* MERGEFORMAT 形如山谷
极值 f(x0)为极大值 f(x0)为极小值
极值点 x0为极大值点 x0为极小值点
3.函数的最值与导数
(1)函数f(x)在[a,b]上有最值的条件
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
(2)求y=f(x)在[a,b]上的最大(小)值的步骤
①求函数y=f(x)在(a,b)内的极值;
②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
[微点提醒]
1.函数f(x)在区间(a,b)上递增,则f′(x)≥0,“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.
2.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.
3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.
4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.
基 础 自 测
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.( )
(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( )
(3)函数的极大值一定大于其极小值.( )
(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )
(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )
解析 (1)f(x)在(a,b)内单调递增,则有f′(x)≥0.
(3)函数的极大值也可能小于极小值.
(4)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导函数异号.
答案 (1)× (2)√ (3)× (4)× (5)√
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\教材衍化.TIF" \* MERGEFORMAT
2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为( )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\C1.TIF" \* MERGEFORMAT
A.1 B.2 C.3 D.4
解析 由题意知在x=-1处f′(-1)=0,且其两侧导数符号为左负右正.
答案 A
3.(选修2-2P32A5(4)改编)函数f(x)=2x-xln x的极值是( )
A. B. C.e D.e2
解析 因为f′(x)=2-(ln x+1)=1-ln x,令f′(x)=0,所以x=e,当f′(x)>0时,解得0
e,所以x=e时,f(x)取到极大值,f(x)极大值=f(e)=e.
答案 C
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考题体验.TIF" \* MERGEFORMAT
4.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是( )
A.先增后减 B.先减后增
C.单调递增 D.单调递减
解析 易知f′(x)=-sin x-1,x∈(0,π),
则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.
答案 D
5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\17GS32.tif" \* MERGEFORMAT
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\17GS33.tif" \* MERGEFORMAT
解析 设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0
答案 D
6.(2018·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( )
A.4 B.2或6
C.2 D.6
解析 函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,
由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,
又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当c=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.
答案 C
第1课时 导数与函数的单调性
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考点聚焦突破.tif" \* MERGEFORMAT
考点一 求函数的单调区间
【例1】 已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.
(1)确定a的值;
(2)若g(x)=f(x)ex,求函数g(x)的单调减区间.
解 (1)对f(x)求导得f′(x)=3ax2+2x,
因为f(x)在x=-处取得极值,所以f′=0,
即3a·+2·=-=0,解得a=.
(2)由(1)得g(x)=ex,
故g′(x)=x(x+1)(x+4)ex.
令g′(x)<0,即x(x+1)(x+4)<0,
解得-1
所以g(x)的单调减区间为(-1,0),(-∞,-4).
规律方法 1.求函数单调区间的步骤:
(1)确定函数f(x)的定义域;(2)求f′(x);(3)在定义域内解不等式f′(x)>0,得单调递增区间;(4)在定义域内解不等式f′(x)<0,得单调递减区间.
2.若所求函数的单调区间不止一个时,用“,”与“和”连接.
【训练1】 (1)已知函数f(x)=xln x,则f(x)( )
A.在(0,+∞)上递增 B.在(0,+∞)上递减
C.在上递增 D.在上递减
(2)已知定义在区间(-π,π)上的函数f(x)=xsin x+cos x,则f(x)的单调递增区间为________.
解析 (1)因为函数f(x)=xln x,定义域为(0,+∞),所以f′(x)=ln x+1(x>0),当f′(x)>0时,解得x>,即函数的单调递增区间为;当f′(x)<0时,解得0
(2)f′(x)=sin x+xcos x-sin x=xcos x.令f′(x)=xcos x>0,则其在区间(-π,π)上的解集为和,即f(x)的单调递增区间为,.
答案 (1)D (2),
考点二 讨论函数的单调性
【例2】 (2017·全国Ⅰ卷改编)已知函数f(x)=ex(ex-a)-a2x,其中参数a≤0.
(1)讨论f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.
解 (1)函数f(x)的定义域为(-∞,+∞),且a≤0.
f′(x)=2e2x-aex-a2=(2ex+a)(ex-a).
①若a=0,则f(x)=e2x,在(-∞,+∞)上单调递增.
②若a<0,则由f′(x)=0,得x=ln .
当x∈时,f′(x)<0;
当x∈时,f′(x)>0.
故f(x)在上单调递减,
在区间上单调递增.
(2)①当a=0时,f(x)=e2x≥0恒成立.
②若a<0,则由(1)得,当x=ln时,f(x)取得最小值,最小值为f=a2,
故当且仅当a2≥0,
即0>a≥-2e时,f(x)≥0.
综上,a的取值范围是[-2e,0].
规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.
(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.
2.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.
【训练2】 已知f(x)=-aln x,a∈R,求f(x)的单调区间.
解 因为f(x)=-aln x,x∈(0,+∞),
所以f′(x)=x-=.
(1)当a≤0时,f′(x)>0,所以f(x)在(0,+∞)上为单调递增函数.
(2)当a>0时,f′(x)=,则有
①当x∈(0,)时,f′(x)<0,所以f(x)的单调递减区间为(0,).
②当x∈(,+∞)时,f′(x)>0,所以f(x)的单调递增区间为(,+∞).
综上所述,当a≤0时,f(x)的单调递增区间为(0,+∞),无单调递减区间.
当a>0时,函数f(x)的单调递减区间为(0,),单调递增区间为(,+∞).
考点三 函数单调性的简单应用 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\箭头.TIF" \* MERGEFORMAT 多维探究
角度1 比较大小或解不等式
【例3-1】 (1)已知函数y=f(x)对于任意的x∈满足f′(x)cos x+f(x)sin x=1+ln x,其中f′(x)是函数f(x)的导函数,则下列不等式成立的是( )
A.f
f
C.f>f D.f>f
(2)已知函数f′(x)是函数f(x)的导函数,f(1)=,对任意实数都有f(x)-f′(x)>0,设F(x)=,则不等式F(x)<的解集为( )
A.(-∞,1) B.(1,+∞)
C.(1,e) D.(e,+∞)
解析 (1)令g(x)=,则g′(x)==.由解得
又>,所以g>g,所以>,
即f>f.
(2)F′(x)==,
又f(x)-f′(x)>0,知F′(x)<0,
∴F(x)在R上单调递减.
由F(x)<=F(1),得x>1,
所以不等式F(x)<的解集为(1,+∞).
答案 (1)B (2)B
角度2 根据函数单调性求参数
【例3-2】 (2019·昆明诊断)已知函数f(x)=ln x,g(x)=ax2+2x.
(1)若函数h(x)=f(x)-g(x)存在单调递减区间,求实数a的取值范围;
(2)若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求实数a的取值范围.
解 h(x)=ln x-ax2-2x,x>0.
∴h′(x)=-ax-2.
(1)若函数h(x)在(0,+∞)上存在单调减区间,
则当x>0时,-ax-2<0有解,即a>-有解.
设G(x)=-,所以只要a>G(x)min.
又G(x)=-1,所以G(x)min=-1.
所以a>-1.即实数a的取值范围是(-1,+∞).
(2)由h(x)在[1,4]上单调递减,
∴当x∈[1,4]时,h′(x)=-ax-2≤0恒成立,
则a≥-恒成立,设G(x)=-,
所以a≥G(x)max.
又G(x)=-1,x∈[1,4],
因为x∈[1,4],所以∈,
所以G(x)max=-(此时x=4),所以a≥-.
又当a=-时,h′(x)=+x-2=,
∵x∈[1,4],∴h′(x)=≤0,
当且仅当x=4时等号成立.
∴h(x)在[1,4]上为减函数.
故实数a的取值范围是.
规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.
2.根据函数单调性求参数的一般思路
(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.
(2)f(x)是单调递增的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应注意此时式子中的等号不能省略,否则漏解.
(3)函数在某个区间存在单调区间可转化为不等式有解问题.
【训练3】 (1)已知f(x)是定义在区间(0,+∞)内的函数,其导函数为f′(x),且不等式xf′(x)<2f(x)恒成立,则( )
A.4f(1)
f(2)
C.f(1)<4f(2) D.f(1)>4f′(2)
(2)(2019·淄博桓台月考)若函数f(x)=kx-ln x在区间(2,+∞)上单调递增,则k的取值范围是( )
A.(-∞,-2] B.
C.[2,+∞) D.
解析 (1)设函数g(x)=(x>0),
则g′(x)==<0,
所以函数g(x)在(0,+∞)内为减函数,
所以g(1)>g(2),即>,所以4f(1)>f(2).
(2)由于f′(x)=k-,f(x)=kx-ln x在区间(2,+∞)上单调递增,等价于f′(x)=k-≥0在(2,+∞)上恒成立,由于k≥,而0<<,所以k≥.即k的取值范围是.
答案 (1)B (2)B
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.已知函数解析式求单调区间,实质上是求f′(x)>0,f′(x)<0的解区间,并注意函数f(x)的定义域.
2.含参函数的单调性要注意分类讨论,通过确定导数的符号判断函数的单调性.
3.已知函数单调性求参数可以利用给定的已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.
[易错防范]
1.求单调区间应遵循定义域优先的原则.
2.注意两种表述“函数f(x)在(a,b)上为减函数”与“函数f(x)的减区间为(a,b)”的区别.
3.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.
4.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对?x∈(a,b),都有f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子区间内都不恒为零.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:40分钟)
一、选择题
1.函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是( )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S354.TIF" \* MERGEFORMAT
解析 由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足.
答案 D
2.函数f(x)=x·ex-ex+1的单调递增区间是( )
A.(-∞,e) B.(1,e)
C.(e,+∞) D.(e-1,+∞)
解析 由f(x)=x·ex-ex+1,
得f′(x)=(x+1-e)·ex,
令f′(x)>0,解得x>e-1,
所以函数f(x)的单调递增区间是(e-1,+∞).
答案 D
3.(2019·福州质检)若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是( )
A.k≤-3或-1≤k≤1或k≥3
B.不存在这样的实数k
C.-2
D.-3
解析 由f(x)=x3-12x,得f′(x)=3x2-12,
令f′(x)=0,解得x=-2或x=2,
只要f′(x)=0的解有一个在区间(k-1,k+1)内,函数f(x)在区间(k-1,k+1)上就不单调,则k-1<-2
答案 D
4.已知f(x)=,则( )
A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)
C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)
解析 f(x)的定义域是(0,+∞),∵f′(x)=,
∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,
故x=e时,f(x)max=f(e),
又f(2)==,f(3)==,
则f(e)>f(3)>f(2).
答案 D
5.(2019·保定一中模拟)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
解析 由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,
因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增.
又F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.
答案 B
二、填空题
6.已知函数f(x)=(-x2+2x)ex(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为________.
解析 因为f(x)=(-x2+2x)ex,
所以f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.
令f′(x)>0,即(-x2+2)ex>0,
因为ex>0,所以-x2+2>0,解得-
所以函数f(x)的单调递增区间为(-,).
答案 (-,)
7.若函数f(x)=ax3+3x2-x恰好有三个单调区间,则实数a的取值范围是________.
解析 由题意知f′(x)=3ax2+6x-1,由函数f(x)恰好有三个单调区间,得f′(x)=0有2个不同的实根.需满足a≠0,且Δ=36+12a>0,解得a>-3,
所以实数a的取值范围是(-3,0)∪(0,+∞).
答案 (-3,0)∪(0,+∞)
8.若函数f(x)=-x3+x2+2ax在上存在单调递增区间,则a的取值范围是________.
解析 对f(x)求导,得f′(x)=-x2+x+2a=-2++2a.当x∈时,f′(x)的最大值为f′=+2a.令+2a>0,解得a>-.所以a的取值范围是.
答案
三、解答题
9.已知函数f(x)=+-ln x-,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.
(1)求a的值;
(2)求函数f(x)的单调区间.
解 (1)对f(x)求导得f′(x)=--,
由f(x)在点(1,f(1))处的切线垂直于直线y=x知f′(1)=--a=-2,解得a=.
(2)由(1)知f(x)=+-ln x-(x>0).
则f′(x)=.
令f′(x)=0,且x>0,
∴x=5(x=-1舍去).
当x∈(0,5)时,f′(x)<0;当x>5时,f′(x)>0.
所以函数f(x)的增区间为(5,+∞),减区间为(0,5).
10.(2019·成都七中检测)设函数f(x)=ax2-a-ln x,g(x)=-,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0.
(1)解 由题意得f′(x)=2ax-=(x>0).
当a≤0时,f′(x)<0,f(x)在(0,+∞)内单调递减.
当a>0时,由f′(x)=0有x=,
当x∈时,f′(x)<0,f(x)单调递减;
当x∈时,f′(x)>0,f(x)单调递增.
(2)证明 令s(x)=ex-1-x,则s′(x)=ex-1-1.
当x>1时,s′(x)>0,所以s(x)>s(1),即ex-1>x,
从而g(x)=-=>0.
能力提升题组
(建议用时:20分钟)
11.若函数exf(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是( )
A.f(x)=2-x B.f(x)=x2
C.f(x)=3-x D.f(x)=cos x
解析 设函数g(x)=ex·f(x),对于A,g(x)=ex·2-x=,在定义域R上为增函数,A正确.对于B,g(x)=ex·x2,则g′(x)=x(x+2)ex,由g′(x)>0得x<-2或x>0,∴g(x)在定义域R上不是增函数,B不正确.对于C,g(x)=ex·3-x=在定义域R上是减函数,C不正确.对于D,g(x)=ex·cos x,则g′(x)=excos,g′(x)>0在定义域R上不恒成立,D不正确.
答案 A
12.(2019·惠州调研)已知函数f(x)=xsin x+cos x+x2,则不等式f(ln x)+f<2f(1)的解集为( )
A.(e,+∞) B.(0,e)
C.∪(1,e) D.
解析 f(x)=xsin x+cos x+x2是偶函数,
所以f=f(-ln x)=f(ln x).
则原不等式可变形为f(ln x)
又f′(x)=xcos x+2x=x(2+cos x),
由2+cos x>0,得x>0时,f′(x)>0.
所以f(x)在(0,+∞)上单调递增.
∴|ln x|<1?-1
答案 D
13.(2016·全国Ⅰ卷改编)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是________.
解析 f′(x)=1-cos 2x+acos x=1-(2cos2x-1)+acos x=-cos2 x+acos x+,f(x)在R上单调递增,则f′(x)≥0在R上恒成立.
令cos x=t,t∈[-1,1],则-t2+at+≥0在[-1,1]上恒成立,即4t2-3at-5≤0在t∈[-1,1]上恒成立.
令g(t)=4t2-3at-5,
则解得-≤a≤.
答案
14.已知函数f(x)=aln x-ax-3(a∈R).
(1)求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2·在区间(t,3)上总不是单调函数,求m的取值范围.
解 (1)函数f(x)的定义域为(0,+∞),
且f′(x)=,
当a>0时,f(x)的递增区间为(0,1),
递减区间为(1,+∞);
当a<0时,f(x)的递增区间为(1,+∞),递减区间为(0,1);
当a=0时,f(x)为常函数.
(2)由(1)及题意得f′(2)=-=1,即a=-2,
∴f(x)=-2ln x+2x-3,f′(x)=.
∴g(x)=x3+x2-2x,
∴g′(x)=3x2+(m+4)x-2.
∵g(x)在区间(t,3)上总不是单调函数,
即g′(x)在区间(t,3)上有变号零点.
由于g′(0)=-2,∴
当g′(t)<0时,
即3t2+(m+4)t-2<0对任意t∈[1,2]恒成立,
由于g′(0)<0,故只要g′(1)<0且g′(2)<0,
即m<-5且m<-9,即m<-9;
由g′(3)>0,即m>-.
∴-
即实数m的取值范围是.
点击下载
同课章节目录
1-1
第一章常用逻辑用语
第二章圆锥曲线与方程
第三章导数及其应用
1-2
第一章统计案例
第二章推理与证明
第三章数系的扩充与复数的引入
第四章 框图
点击下载
VIP下载