2019-2020学年苏教版数学必修4 第2章《平面向量》(3份含答案)

文档属性

名称 2019-2020学年苏教版数学必修4 第2章《平面向量》(3份含答案)
格式 zip
文件大小 1.9MB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2019-10-01 12:10:50

文档简介

平面向量基本定理及坐标表示
最新考纲 1.了解平面向量的基本定理及其意义;2.掌握平面向量的正交分解及其坐标表示;3.会用坐标表示平面向量的加法、减法与数乘运算;4.理解用坐标表示的平面向量共线的条件.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.平面向量的基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
2.平面向量的正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.
3.平面向量的坐标运算
(1)向量加法、减法、数乘运算及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=eq \r(x+y).
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),||=.
4.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a∥b?x1y2-x2y1=0.
[微点提醒]
1.若a=(x1,y1),b=(x2,y2)且a=b,则x1=x2且y1=y2.
2.若a与b不共线,λa+μb=0,则λ=μ=0.
3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.
基 础 自 测
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)平面内的任何两个向量都可以作为一组基底.(  )
(2)同一向量在不同基底下的表示是相同的.(  )
(3)设a,b是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.(  )
(4)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可以表示成=.(  )
解析 (1)共线向量不可以作为基底.
(2)同一向量在不同基底下的表示不相同.
(4)若b=(0,0),则=无意义.
答案 (1)× (2)× (3)√ (4)×
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\教材衍化.TIF" \* MERGEFORMAT
2.(必修4P118A2(6)改编)下列各组向量中,可以作为基底的是(  )
A.e1=(0,0),e2=(1,-2)
B.e1=(-1,2),e2=(5,7)
C.e1=(3,5),e2=(6,10)
D.e1=(2,-3),e2=
解析 两个不共线的非零向量构成一组基底,故选B.
答案 B
3.(必修4P99例8改编)设P是线段P1P2上的一点,若P1(1,3),P2(4,0)且P是线段P1P2的一个三等分点(靠近点P1),则点P的坐标为(  )
A.(2,2) B.(3,-1)
C.(2,2)或(3,-1) D.(2,2)或(3,1)
解析 由题意得=且=(3,-3).
设P(x,y),则(x-1,y-3)=(1,-1),
∴x=2,y=2,则点P(2,2).
答案 A
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考题体验.TIF" \* MERGEFORMAT
4.(2015·全国Ⅰ卷)已知点A(0,1),B(3,2),向量=(-4,-3),则向量=(  )
A.(-7,-4) B.(7,4)
C.(-1,4) D.(1,4)
解析 根据题意得=(3,1),∴=-=(-4,-3)-(3,1)=(-7,
-4),故选A.
答案 A
5.(2017·山东卷)已知向量a=(2,6),b=(-1,λ),若a∥b,则λ=________.
解析 ∵a∥b,∴2λ+6=0,解得λ=-3.
答案 -3
6.(2019·福州质检)已知?ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐标为________.
解析 设D(x,y),则由=,得(4,1)=(5-x,6-y),即解得
答案 (1,5)
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考点聚焦突破.tif" \* MERGEFORMAT
考点一 平面向量基本定理及其应用
【例1】 (1)(2019·衡水中学调研)一直线l与平行四边形ABCD中的两边AB,AD分别交于点E,F,且交其对角线AC于点M,若=2,=3,=λ-μ(λ,μ∈R),则μ-λ=(  )
A.- B.1 C. D.-3
(2)(2019·长春调研)在△ABC中,D为三角形所在平面内一点,且=+.延长AD交BC于E,若=λ+μ,则λ-μ的值是________.
解析 (1)=λ-μ=λ-μ(+)
=(λ-μ)-μ=2(λ-μ)-3μ.
因为E,M,F三点共线,所以2(λ-μ)+(-3μ)=1,
即2λ-5μ=1,∴μ-λ=-.
(2)设=x,∵=+,
∴=+.
由于E,B,C三点共线,∴+=1,x=.
根据平面向量基本定理,得λ=,μ=.
因此λ-μ=-=-=-.
答案 (1)A (2)-
规律方法 1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.
2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
【训练1】 (1)(2019·济南质检)在△ABC中,=,若P是直线BN上的一点,且满足=m+,则实数m的值为(  )
A.-4 B.-1 C.1 D.4
(2)在平面直角坐标系中,O为坐标原点,A,B,C三点满足=+,则=________.
解析 (1)根据题意设=n(n∈R),则=+=+n=+n(-)=+n=(1-n)+.
又=m+,∴解得
(2)因为=+,所以-=-+=(-),所以=,所以=.
答案 (1)B (2)
考点二 平面向量的坐标运算
【例2】 (1)设A(0,1),B(1,3),C(-1,5),D(0,-1),则+等于(  )
A.-2 B.2 C.-3 D.3
(2)向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则=(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\V51.TIF" \* MERGEFORMAT
A.1 B.2 C.3 D.4
解析 (1)由题意得=(1,2),=(-1,4),=(0,-2),所以+=(0,6)=-3(0,-2)=-3.
(2)以向量a和b的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\V52.TIF" \* MERGEFORMAT
则A(1,-1),B(6,2),C(5,-1),
∴a==(-1,1),b==(6,2),c==(-1,-3),
∵c=λa+μb,∴(-1,-3)=λ(-1,1)+μ(6,2),
则解得λ=-2,μ=-,
∴,==4.
答案 (1)C (2)D
规律方法 1.巧借方程思想求坐标:若已知向量两端点的坐标,则应先求出向量的坐标,解题过程中注意方程思想的应用.
2.向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算的代数化,将数与形结合起来,使几何问题转化为数量运算问题.
【训练2】 (1)(2019·广东联考)已知O为坐标原点,点C是线段AB上一点,且A(1,1),C(2,3),||=2||,则向量的坐标是________.
(2)如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若=λ+μ(λ,μ∈R),则λ+μ的值为(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S440.TIF" \* MERGEFORMAT
A. B. C.2 D.
解析 (1)由点C是线段AB上一点,||=2||,得=-2.
设点B为(x,y),则(2-x,3-y)=-2(1,2).
则解得
所以向量的坐标是(4,7).
(2)建立如图所示的平面直角坐标系,则D(0,0).
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S441.TIF" \* MERGEFORMAT
不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),
∴=(-2,2),=(-2,1),=(1,2),
∵=λ+μ,∴(-2,2)=λ(-2,1)+μ(1,2),
∴解得则λ+μ=.
答案 (1)(4,7) (2)B
考点三 平面向量共线的坐标表示  INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\箭头.TIF" \* MERGEFORMAT 多维探究
角度1 利用向量共线求向量或点的坐标
【例3-1】 (一题多解)已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为________.
解析 法一 由O,P,B三点共线,可设=λ=(4λ,4λ),
则=-=(4λ-4,4λ).
又=-=(-2,6),
由与共线,得(4λ-4)×6-4λ×(-2)=0,
解得λ=,
所以==(3,3),
所以点P的坐标为(3,3).
法二 设点P(x,y),则=(x,y),因为=(4,4),且与共线,所以=,即x=y.
又=(x-4,y),=(-2,6),且与共线,
所以(x-4)×6-y×(-2)=0,解得x=y=3,
所以点P的坐标为(3,3).
答案 (3,3)
角度2 利用向量共线求参数
【例3-2】 (1)(2018·全国Ⅲ卷)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=________.
(2)已知向量a=(2,3),b=(-1,2),若ma+nb与a-3b共线,则=________.
解析 (1)由题意得2a+b=(4,2),因为c=(1,λ),且c∥(2a+b),所以4λ-2=0,即λ=.
(2)由≠,所以a与b不共线,
又a-3b=(2,3)-3(-1,2)=(5,-3)≠0.
那么当ma+nb与a-3b共线时,
有=,即得=-.
答案 (1) (2)-
规律方法 1.两平面向量共线的充要条件有两种形式:(1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0;(2)若a∥b(b≠0),则a=λb.
2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.
【训练3】 (1)(2019·北师大附中检测)已知向量a=(1,1),点A(3,0),点B为直线y=2x上的一个动点,若∥a,则点B的坐标为________.
(2)设向量=(1,-2),=(2m,-1),=(-2n,0),m,n∈R,O为坐标原点,若A,B,C三点共线,则m+n的最大值为(  )
A.-3 B.-2 C.2 D.3
解析 (1)由题意设B(x,2x),则=(x-3,2x),
∵∥a,∴x-3-2x=0,解得x=-3,∴B(-3,-6).
(2)由题意易知,∥,其中=-=(2m-1,1),=-=(-2n-1,2),
所以(2m-1)×2=1×(-2n-1),得:2m+1+2n=1.
2m+1+2n≥2,所以2m+n+1≤2-2,即m+n≤-3.
答案 (1)(-3,-6) (2)A
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.
2.平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组.
3.用平面向量基本定理可将平面中任一向量分解成形如a=λ1e1+λ2e2的形式.
[易错防范]
1.注意运用两个向量a,b共线坐标表示的充要条件应为x1y2-x2y1=0.
2.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:35分钟)
一、选择题
1.向量a,b满足a+b=(-1,5),a-b=(5,-3),则b为(  )
A.(-3,4) B.(3,4)
C.(3,-4) D.(-3,-4)
解析 由a+b=(-1,5),a-b=(5,-3),
得2b=(-1,5)-(5,-3)=(-6,8),
∴b=(-6,8)=(-3,4).
答案 A
2.已知点A(1,3),B(4,-1),则与同方向的单位向量是(  )
A. B.
C. D.
解析 =-=(4,-1)-(1,3)=(3,-4),
∴与同方向的单位向量为=.
答案 A
3.已知向量a=(2,1),b=(3,4),c=(1,m),若实数λ满足a+b=λc,则λ+m等于(  )
A.5 B.6 C.7 D.8
解析 由平面向量的坐标运算法则可得a+b=(5,5),
λc=(λ,λm),据此有解得λ=5,m=1,∴λ+m=6.
答案 B
4.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的(  )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
解析 由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m=-6”是“a∥(a+b)”的充要条件.
答案 A
5.已知e1,e2是不共线向量,a=me1+2e2,b=ne1-e2,且mn≠0,若a∥b,则=(  )
A.- B. C.-2 D.2
解析 因为a∥b,所以a=λb,即me1+2e2=λ(ne1-e2),则得=-2.
答案 C
6.已知点A(2,3),B(4,5),C(7,10),若=+λ(λ∈R),且点P在直线x-2y=0上,则λ的值为(  )
A. B.- C. D.-
解析 设P(x,y),则由=+λ,
得(x-2,y-3)=(2,2)+λ(5,7)=(2+5λ,2+7λ).
所以x=5λ+4,y=7λ+5.
又点P在直线x-2y=0上,
故5λ+4-2(7λ+5)=0,解得λ=-.
答案 B
7.(2019·河北豫水中学质检)已知在Rt△ABC中,∠BAC=90°,AB=1,AC=2,D是△ABC内一点,且∠DAB=60°,设=λ+μ(λ,μ∈R),则=(  )
A. B. C.3 D.2
解析 如图,以A为原点,AB所在直线为x轴,AC所在直线为y轴建立平面直角坐标系,则B点的坐标为(1,0),C点的坐标为(0,2),
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S443.TIF" \* MERGEFORMAT
因为∠DAB=60°,所以设D点的坐标为(m,m)(m≠0).
=(m,m)=λ+μ=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m,且μ=m,
所以=.
答案 A
8.在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于H,记,分别为a,b,则=(  )
A.a-b B.a+b
C.-a+b D.-a-b
解析 设=λ,=μ.而=+=-b+λ=-b+λ,
=μ=μ.
因此,μ=-b+λ.由于a,b不共线,因此由平面向量的基本定理,得解之得λ=,μ=.故=λ=λ=a+b.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S466.TIF" \* MERGEFORMAT
答案 B
二、填空题
9.(2019·安徽江南十校联考)已知平面向量a=(1,m),b=(2,5),c=(m,3),且(a+c)∥(a-b),则m=________.
解析 a=(1,m),b=(2,5),c=(m,3),
∴a+c=(m+1,m+3),a-b=(-1,m-5),
又(a+c)∥(a-b),
∴(m+1)(m-5)+m+3=0,即m2-3m-2=0,
解之得m=.
答案 
10.已知A(2,3),B(4,-3),点P在线段AB的延长线上,且|AP|=|BP|,则点P的坐标为________.
解析 设P(x,y),由点P在线段AB的延长线上,
则=,得(x-2,y-3)=(x-4,y+3),
即解得
所以点P的坐标为(8,-15).
答案 (8,-15)
11.已知A(1,1),B(3,-1),C(a,b),若A,B,C三点共线,则a,b的关系式为________.
解析 由已知得=(2,-2),=(a-1,b-1),
∵A,B,C三点共线,∴∥.
∴2(b-1)+2(a-1)=0,即a+b=2.
答案 a+b=2
12.在△ABC中,内角A,B,C所对的边分别为a,b,c,若p=(a+c,b),q=(b-a,c-a),且p∥q,则角C=________.
解析 因为p∥q,则(a+c)(c-a)-b(b-a)=0,
所以a2+b2-c2=ab,所以=,
由余弦定理知,cos C=,又因为0答案 
能力提升题组
(建议用时:15分钟)
13.如图,在△ABC中,=,=,若=λ+μ,则λ+μ的值为(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S444.TIF" \* MERGEFORMAT
A. B. C. D.
解析 =+=+=+(-)=+×=+.
因为=λ+μ,所以λ=,μ=,则λ+μ=+=.
答案 A
14.给定两个长度为1的平面向量和,它们的夹角为90°,如图所示,点C在以O为圆心的圆弧上运动,若=x+y,其中x,y∈R,则x+y的最大值是(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S445.TIF" \* MERGEFORMAT
A.1 B. C. D.2
解析 因为点C在以O为圆心的圆弧上,所以||2=|x+y|2=x2+y2+2xy·=x2+y2,
∴x2+y2=1,则2xy≤x2+y2=1.
又(x+y)2=x2+y2+2xy≤2,
故x+y的最大值为.
答案 B
15.已知||=1,||=,·=0,点C在∠AOB内,且与的夹角为30°,设=m+n(m,n∈R),则的值为________.
解析 ∵·=0,∴⊥,
以OA为x轴,OB为y轴建立直角坐标系,
=(1,0),=(0,),=m+n=(m,n).
∵tan 30°==,
∴m=3n,即=3.
答案 3
16.在△ABC中,点D满足=,当点E在线段AD上移动时,若=λ+μ,则t=(λ-1)2+μ2的最小值是________.
解析 因为=,
所以=+.
又=λ+μ,点E在线段AD上移动,
所以∥,则=,即λ=μ.
所以t=(λ-1)2+λ2=2λ2-2λ+1=2+.
当λ=时,t的最小值是.
答案 


平面向量的数量积及其应用
最新考纲 1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.平面向量数量积的有关概念
(1)向量的夹角:已知两个非零向量a和b,记=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.
(2)数量积的定义:已知两个非零向量a与b,它们的夹角为θ,则a与b的数量积(或内积)a·b=|a||b|cos__θ.规定:零向量与任一向量的数量积为0,即0·a=0.
(3)数量积的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.
2.平面向量数量积的性质及其坐标表示
设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.
(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.
(2)模:|a|==eq \r(x+y).
(3)夹角:cos θ==eq \f(x1x2+y1y2,\r(x+y)·\r(x+y)).
(4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.
(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ eq \r(x+y)·eq \r(x+y).
3.平面向量数量积的运算律
(1)a·b=b·a(交换律).
(2)λa·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
[微点提醒]
1.两个向量a,b的夹角为锐角?a·b>0且a,b不共线;两个向量a,b的夹角为钝角?a·b<0且a,b不共线.
2.平面向量数量积运算的常用公式
(1)(a+b)·(a-b)=a2-b2.
(2)(a+b)2=a2+2a·b+b2.
(3)(a-b)2=a2-2a·b+b2.
基 础 自 测
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)两个向量的夹角的范围是.(  )
(2)向量在另一个向量方向上的投影为数量,而不是向量.(  )
(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.(  )
(4)若a·b=a·c(a≠0),则b=c.(  )
解析 (1)两个向量夹角的范围是[0,π].
(4)由a·b=a·c(a≠0)得|a||b|·cos〈a,b〉=|a||c|·cos〈a,c〉,所以向量b和c不一定相等.
答案 (1)× (2)√ (3)√ (4)×
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\教材衍化.TIF" \* MERGEFORMAT
2.(必修4P108A10改编)设a,b是非零向量.“a·b=|a||b|”是“a∥b”的(  )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析 设a与b的夹角为θ.因为a·b=|a|·|b|cos θ=|a|·|b|,所以cos θ=1,即a与b的夹角为0°,故a∥b.
当a∥b时,a与b的夹角为0°或180°,
所以a·b=|a|·|b|cos θ=±|a|·|b|,
所以“a·b=|a|·|b|”是“a∥b”的充分而不必要条件.
答案 A
3.(必修4P108A2改编)在圆O中,长度为的弦AB不经过圆心,则·的值为________.
解析 设向量,的夹角为θ,
则·=||||·cos θ=||cos θ·||=||·||=×()2=1.
答案 1
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考题体验.TIF" \* MERGEFORMAT
4.(2018·全国Ⅱ卷)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=(  )
A.4 B.3 C.2 D.0
解析 a·(2a-b)=2|a|2-a·b=2×12-(-1)=3.
答案 B
5.(2018·云南11校跨区调研)平面向量a与b的夹角为45°,a=(1,1),|b|=2,则|3a+b|等于(  )
A.13+6 B.2
C. D.
解析 依题意得a2=2,a·b=×2×cos 45°=2,|3a+b|====.
答案 D
6.(2017·全国Ⅰ卷)已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________.
解析 由题意得a+b=(m-1,3),
因为a+b与a垂直,所以(a+b)·a=0,所以-(m-1)+2×3=0,解得m=7.
答案 7
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考点聚焦突破.tif" \* MERGEFORMAT
考点一 平面向量数量积的运算
【例1】 (1)若向量m=(2k-1,k)与向量n=(4,1)共线,则m·n=(  )
A.0 B.4 C.- D.-
(2)(2018·天津卷)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则·的值为(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\18GW20.TIF" \* MERGEFORMAT
A.-15 B.-9 C.-6 D.0
解析 (1)由题意得2k-1-4k=0,解得k=-,
即m=,
所以m·n=-2×4+×1=-.
(2)连接OA.在△ABC中,=-=3-3=3(-)-3(-)=3(-),
∴·=3(-)·=3(·-2)=3×(2×1×cos 120°-12)=3×(-2)=-6.
答案 (1)D (2)C
规律方法 1.数量积公式a·b=|a||b|cos θ在解题中的运用,解题过程具有一定的技巧性,需要借助向量加、减法的运算及其几何意义进行适当变形;也可建立平面直角坐标系,借助数量积的坐标运算公式a·b=x1x2+y1y2求解,较为简捷、明了.
2.在分析两向量的夹角时,必须使两个向量的起点重合,如果起点不重合,可通过“平移”实现.
【训练1】 (1)在△ABC中,AB=4,BC=6,∠ABC=,D是AC的中点,E在BC上,且AE⊥BD,则·等于(  )
A.16 B.12 C.8 D.-4
(2)(2019·皖南八校三模)已知|a|=|b|=1,向量a与b的夹角为45°,则(a+2b)·a=________.
解析 (1)以B为原点,BA,BC所在直线分别为x,y轴建立平面直角坐标系(图略),A(4,0),B(0,0),C(0,6),D(2,3).设E(0,t),·=(2,3)·(-4,t)=-8+3t=0,∴t=,即E,·=·(0,6)=16.
(2)因为|a|=|b|=1,向量a与b的夹角为45°,
所以(a+2b)·a=a2+2a·b=|a|2+2|a|·|b|cos 45°=1+.
答案 (1)A (2)1+
考点二 平面向量数量积的应用  INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\箭头.TIF" \* MERGEFORMAT 多维探究
角度1 平面向量的垂直
【例2-1】 (1)(2018·北京卷)设向量a=(1,0),b=(-1,m).若a⊥(ma-b),则m=________.
(2)(2019·宜昌二模)已知△ABC中,∠A=120°,且AB=3,AC=4,若=λ+,且⊥,则实数λ的值为(  )
A. B. C.6 D.
解析 (1)a=(1,0),b=(-1,m),∴a2=1,a·b=-1,
由a⊥(ma-b)得a·(ma-b)=0,即ma2-a·b=0.
∴m-(-1)=0,∴m=-1.
(2)因为=λ+,且⊥,
所以有·=(λ+)·(-)=λ·-λ2+2-·=(λ-1)·-λ2+2=0,
整理可得(λ-1)×3×4×cos 120°-9λ+16=0,
解得λ=.
答案 (1)-1 (2)A
规律方法 1.当向量a,b是非坐标形式时,要把a,b用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算.
2.数量积的运算a·b=0?a⊥b中,是对非零向量而言的,若a=0,虽然有a·b=0,但不能说a⊥b.
角度2 平面向量的模
【例2-2】 (1)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.
(2)(2019·安阳调研)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为________.
解析 (1)由α⊥(α-2β)得α·(α-2β)=α2-2α·β=0,
所以α·β=,
所以(2α+β)2=4α2+β2+4α·β=4×12+22+4×=10,
所以|2α+β|=.
(2)建立平面直角坐标系如图所示,则A(2,0),
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S446.TIF" \* MERGEFORMAT
设P(0,y),C(0,b),则B(1,b).
所以+3=(2,-y)+3(1,b-y)=(5,3b-4y),
所以|+3|=(0≤y≤b),
所以当y=b时,|+3|取得最小值5.
答案 (1) (2)5
规律方法 1.求向量的模的方法:(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义.
2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.
角度3 平面向量的夹角
【例2-3】 (1)(2019·衡水中学调研)已知非零向量a,b满足|a+b|=|a-b|=|a|,则向量a+b与a-b的夹角为________.
(2)若向量a=(k,3),b=(1,4),c=(2,1),已知2a-3b与c的夹角为钝角,则k的取值范围是________.
解析 (1)将|a+b|=|a-b|两边平方,得a2+b2+2a·b=a2+b2-2a·b,∴a·b=0.
将|a+b|=|a|两边平方,得a2+b2+2a·b=a2,
∴b2=a2.
设a+b与a-b的夹角为θ,
∴cos θ====.
又∵θ∈[0,π],∴θ=.
(2)∵2a-3b与c的夹角为钝角,∴(2a-3b)·c<0,
即(2k-3,-6)·(2,1)<0,解得k<3.
又若(2a-3b)∥c,则2k-3=-12,即k=-.
当k=-时,2a-3b=(-12,-6)=-6c,
此时2a-3b与c反向,不合题意.
综上,k的取值范围为∪.
答案 (1) (2)∪
规律方法 1.研究向量的夹角应注意“共起点”;两个非零共线向量的夹角可能是0或π;注意向量夹角的取值范围是[0,π];若题目给出向量的坐标表示,可直接套用公式cos θ=eq \f(x1x2+y1y2,\r(x+y)·\r(x+y))求解.
2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.
【训练2】 (1)(2017·全国Ⅲ卷)已知向量a=(-2,3),b=(3,m),且a⊥b,则m=________.
(2)(一题多解)(2017·全国Ⅰ卷)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.
(3)(2017·山东卷)已知e1,e2是互相垂直的单位向量,若e1-e2与e1+λe2的夹角为60°,则实数λ的值是________.
解析 (1)由a⊥b,得a·b=0,
又a=(-2,3),b=(3,m),
∴-6+3m=0,则m=2.
(2)法一 |a+2b|==
===2.
法二 (数形结合法)
由|a|=|2b|=2知,以a与2b为邻边可作出边长为2的菱形OACB,如图,则|a+2b|=||.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S447.TIF" \* MERGEFORMAT
又∠AOB=60°,所以|a+2b|=2.
(3)由题意知|e1|=|e2|=1,e1·e2=0,
|e1-e2|==eq \r(3e-2\r(3)e1·e2+e)==2.
同理|e1+λe2|=.
所以cos 60°=
=eq \f(\r(3)e+(\r(3)λ-1)e1·e2-λe,2\r(1+λ2))==,
解得λ=.
答案 (1)2 (2)2 (3)
考点三 平面向量与三角函数
【例3】 (2019·广州海珠区摸底)在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(cos(A-B),sin(A-B)),n=(cos B,-sin B),且m·n=-.
(1)求sin A的值;
(2)若a=4,b=5,求角B的大小及向量在方向上的投影.
解 (1)由m·n=-,
得cos(A-B)cos B-sin(A-B)sin B=-,
所以cos A=-.因为0所以sin A===.
(2)由正弦定理,得=,
则sin B===,
因为a>b,所以A>B,且B是△ABC一内角,则B=.
由余弦定理得(4)2=52+c2-2×5c×,
解得c=1,c=-7舍去,
故向量在方向上的投影为||cos B=ccos B=1×=.
规律方法 平面向量与三角函数的综合问题的解题思路:
(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.
(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.
【训练3】 (2019·石家庄模拟)已知A,B,C分别为△ABC的三边a,b,c所对的角,向量m=(sin A,sin B),n=(cos B,cos A),且m·n=sin 2C.
(1)求角C的大小;
(2)若sin A,sin C,sin B成等差数列,且·(-)=18,求边c的长.
解 (1)由已知得m·n=sin Acos B+cos Asin B=sin(A+B),
因为A+B+C=π,
所以sin(A+B)=sin(π-C)=sin C,
所以m·n=sin C,又m·n=sin 2C,
所以sin 2C=sin C,所以cos C=.
又0(2)由已知及正弦定理得2c=a+b.
因为·(-)=·=18,
所以abcos C=18,所以ab=36.
由余弦定理得c2=a2+b2-2abcos C=(a+b)2-3ab,
所以c2=4c2-3×36,
所以c2=36,所以c=6.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.计算向量数量积的三种方法
定义、坐标运算、数量积的几何意义,要灵活运用,与图形有关的不要忽略数量积几何意义的应用.
2.求向量模的常用方法
利用公式|a|2=a2,将模的运算转化为向量的数量积的运算.
3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.
[易错防范]
数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0)不能得出b=c,两边不能约去一个向量.数量积运算不满足结合律,(a·b)·c不一定等于a·(b·c).
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\核心素养提升A.tif" \* MERGEFORMAT
数学运算、数学建模——平面向量与三角形的“四心”
1.数学运算是指在明晰运算的基础上,依据运算法则解决数学问题的素养.通过学习平面向量与三角形的“四心”,学生能进一步发展数学运算能力,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.
2.数学建模要求在熟悉的情境中,发现问题并转化为数学问题,能够在关联的情境中,经历数学建模的过程,理解数学建模的意义.本系列通过学习平面向量与三角形的“四心”模型,能够培养学生用模型的思想解决相关问题.
设O为△ABC所在平面上一点,内角A,B,C所对的边分别为a,b,c,则
(1)O为△ABC的外心?||=||=||=.
(2)O为△ABC的重心?++=0.
(3)O为△ABC的垂心?·=·=·.
(4)O为△ABC的内心?a+b+c=0.
类型1 平面向量与三角形的“重心”
【例1】 已知A,B,C是平面上不共线的三点,O为坐标原点,动点P满足=[(1-λ)+(1-λ)+(1+2λ)·],λ∈R,则点P的轨迹一定经过(  )
A.△ABC的内心 B.△ABC的垂心
C.△ABC的重心 D.AB边的中点
解析 取AB的中点D,则2=+,
∵=[(1-λ)+(1-λ)+(1+2λ)],
∴=[2(1-λ)+(1+2λ)]=+,
而+=1,∴P,C,D三点共线,
∴点P的轨迹一定经过△ABC的重心.
答案 C
类型2 平面向量与三角形的“内心”问题
【例2】 在△ABC中,AB=5,AC=6,cos A=,O是△ABC的内心,若=x+y,其中x,y∈[0,1],则动点P的轨迹所覆盖图形的面积为(  )
A. B. C.4 D.6
解析 根据向量加法的平行四边形法则可知,动点P的轨迹是以OB,OC为邻边的平行四边形及其内部,其面积为△BOC的面积的2倍.
在△ABC中,设内角A,B,C所对的边分别为a,b,c,
由余弦定理a2=b2+c2-2bccos A,得a=7.
设△ABC的内切圆的半径为r,则
bcsin A=(a+b+c)r,解得r=,
所以S△BOC=×a×r=×7×=.
故动点P的轨迹所覆盖图形的面积为2S△BOC=.
答案 B
类型3 平面向量与三角形的“垂心”问题
【例3】 已知O是平面上的一个定点,A,B,C是平面上不共线的三个点,动点P满足=+λ(+),λ∈(0,+∞),则动点P的轨迹一定通过△ABC的(  )
A.重心 B.垂心 C.外心 D.内心
解析 因为=+λ(+),
所以=-=λ(+),
所以·=·λ(+)=λ(-||+||)=0,
所以⊥,所以点P在BC的高线上,即动点P的轨迹一定通过△ABC的垂心.
答案 B
类型4 平面向量与三角形的“外心”问题
【例4】 已知在△ABC中,AB=1,BC=,AC=2,点O为△ABC的外心,若=x+y,则有序实数对(x,y)为(  )
A. B.
C. D.
解析 取AB的中点M和AC的中点N,连接OM,ON,则⊥,⊥,
=-=-(x+y)=-y
,=-=-(x+y)=-x.
由⊥,得2-y·=0,①
由⊥,得2-x·=0,②
又因为2=(-)2=2-2·+2,
所以·==-,③
把③代入①、②得解得x=,y=.
故实数对(x,y)为.
答案 A
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:40分钟)
一、选择题
1.已知向量a=(m-1,1),b=(m,-2),则“m=2”是“a⊥b”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 当m=2时,a=(1,1),b=(2,-2),
所以a·b=(1,1)·(2,-2)=2-2=0,
所以a⊥b,充分性成立;
当a⊥b时,a·b=(m-1,1)·(m,-2)=m(m-1)-2=0,
解得m=2或m=-1,必要性不成立.
所以“m=2”是“a⊥b”的充分不必要条件.
答案 A
2.(2019·永州二模)已知非零向量a,b的夹角为60°,且|b|=1,|2a-b|=1,则|a|=(  )
A. B.1 C. D.2
解析 由题意得a·b=|a|×1×=,
又|2a-b|=1,
∴|2a-b|2=4a2-4a·b+b2=4|a|2-2|a|+1=1,
即4|a|2-2|a|=0,又|a|≠0,
解得|a|=.
答案 A
3.(2019·石家庄二模)若两个非零向量a,b满足|a+b|=|a-b|=2|b|,则向量a+b与a的夹角为(  )
A. B. C. D.
解析 设|b|=1,则|a+b|=|a-b|=2.
由|a+b|=|a-b|,得a·b=0,
故以a、b为邻边的平行四边形是矩形,且|a|=,
设向量a+b与a的夹角为θ,
则cos θ====,
又0≤θ≤π,所以θ=.
答案 D
4.如图,在等腰梯形ABCD中,AB=4,BC=CD=2,若E,F分别是边BC,AB上的点,且满足==λ,则当·=0时,λ的值所在的区间是(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S467.TIF" \* MERGEFORMAT
A. B.
C. D.
解析 在等腰梯形ABCD中,AB=4,BC=CD=2,
可得〈,〉=60°,
所以〈,〉=60°,〈,〉=120°,
所以·=4×2×=4,
·=4×2×=-4,·=2×2×=2,
又==λ,所以=λ,=λ,
则=+=+λ,
=-=λ-,
所以·=(+λ)·(λ-)
=λ2-·+λ2·-λ·=0,
即2λ2-7λ+2=0,解得λ=(舍去)或λ=∈.
答案 B
5.(2017·浙江卷)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记I1=·,I2=·,I3=·,则(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\17GS35.tif" \* MERGEFORMAT
A.I1<I2<I3 B.I1<I3<I2
C.I3<I1<I2 D.I2<I1<I3
解析 如图所示,四边形ABCE是正方形,F为正方形的对角线的交点,易得AO∴I1I3,作AG⊥BD于G,
又AB=AD,∴OB∴||||<||||,
而cos∠AOB=cos∠COD<0,∴·>·,
即I1>I3.∴I3 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\C17.TIF" \* MERGEFORMAT
答案 C
二、填空题
6.(2019·淮北二模)在△ABC中,三个顶点的坐标分别为A(3,t),B(t,-1),
C(-3,-1),若△ABC是以B为直角顶点的直角三角形,则t=________.
解析 由已知,得·=0,
则(3-t,t+1)·(-3-t,0)=0,
∴(3-t)(-3-t)=0,解得t=3或t=-3,
当t=-3时,点B与点C重合,舍去.故t=3.
答案 3
7.若非零向量a,b满足|a|=3|b|=|a+2b|,则a,b夹角θ的余弦值为________.
解析 |a|=|a+2b|,两边平方得,
|a|2=|a|2+4|b|2+4a·b=|a|2+4|b|2+4|a||b|·cos θ.
又|a|=3|b|,
所以0=4|b|2+12|b|2cos θ,得cos θ=-.
答案 -
8.(2019·佛山二模)在Rt△ABC中,∠B=90°,BC=2,AB=1,D为BC的中点,E在斜边AC上,若=2,则·=________.
解析 如图,以B为坐标原点,AB所在直线为x轴,BC所在直线为y轴,建立平面直角坐标系,则B(0,0),A(1,0),C(0,2),所以=(-1,2).
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S452.TIF" \* MERGEFORMAT
因为D为BC的中点,所以D(0,1),
因为=2,所以E,
所以=,
所以·=·(-1,2)=-+=.
答案 
三、解答题
9.在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1).
(1)求以线段AB,AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(-t)·=0,求t的值.
解 (1)由题设知=(3,5),=(-1,1),
则+=(2,6),-=(4,4).
所以|+|=2,|-|=4.
故所求的两条对角线的长分别为4,2.
(2)由题设知:=(-2,-1),-t=(3+2t,5+t).
由(-t)·=0,得
(3+2t,5+t)·(-2,-1)=0,
从而5t=-11,所以t=-.
10.在平面直角坐标系中,O为坐标原点,已知向量a=(-1,2),又点A(8,0),B(n,t),C(ksin θ,t)(0≤θ≤).
(1)若⊥a,且||=||,求向量;
(2)若向量与向量a共线,当k>4,且tsin θ取最大值4时,求·.
解 (1)由题设知=(n-8,t),
∵⊥a,∴8-n+2t=0.
又∵||=||,
∴5×64=(n-8)2+t2=5t2,得t=±8.
当t=8时,n=24;当t=-8时,n=-8,
∴=(24,8)或=(-8,-8).
(2)由题设知=(ksin θ-8,t),
∵与a共线,∴t=-2ksin θ+16,
tsin θ=(-2ksin θ+16)sin θ
=-2k(sin θ-)2+.
∵k>4,∴0<<1,
∴当sin θ=时,tsin θ取得最大值.
由=4,得k=8,
此时θ=,=(4,8),
∴·=(8,0)·(4,8)=32.
能力提升题组
(建议用时:20分钟)
11.(2019·唐山二模)在△ABC中,∠C=90°,AB=6,点P满足CP=2,则·的最大值为(  )
A.9 B.16 C.18 D.25
解析 ∵∠C=90°,AB=6,
∴·=0,∴|+|=|-|=||=6,
∴·=(+)·(+)=2+·(+)+·
=·(+)+4,
∴当与+方向相同时,·(+)取得最大值2×6=12,
∴·的最大值为16.
答案 B
12.(2018·浙江卷)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2-4e·b+3=0,则|a-b|的最小值是(  )
A.-1 B.+1
C.2 D.2-
解析 设O为坐标原点,a=,b==(x,y),e=(1,0),由b2-4e·b+3=0得x2+y2-4x+3=0,即(x-2)2+y2=1,所以点B的轨迹是以C(2,0)为圆心,1为半径的圆.因为a与e的夹角为,所以不妨令点A在射线y=x(x>0)上,如图,数形结合可知|a-b|min=||-||=-1.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\18GS55.TIF" \* MERGEFORMAT
答案 A
13.在△ABC中,AB=2AC=6,·=2,点P是△ABC所在平面内一点,则当2+2+2取得最小值时,·=________.
解析 ∵·=||·||·cos B=||2,
∴||·cos B=||=6,
∴⊥,即A=,
以A为坐标原点建立如图所示的坐标系,
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S448.TIF" \* MERGEFORMAT
则B(6,0),C(0,3),设P(x,y),
则2+2+2=x2+y2+(x-6)2+y2+x2+(y-3)2=3x2-12x+3y2-6y+45=3[(x-2)2+(y-1)2+10]
∴当x=2,y=1时,2+2+2取得最小值,此时P(2,1),=(2,1),
此时·=(2,1)·(-6,3)=-9.
答案 -9
14.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(a-c)·=c·.
(1)求角B的大小;
(2)若|-|=,求△ABC面积的最大值.
解 (1)由题意得(a-c)cos B=bcos C.
根据正弦定理得(sin A-sin C)cos B=sin Bcos C,
所以sin Acos B=sin(C+B),
即sin Acos B=sin A,因为A∈(0,π),所以sin A>0,
所以cos B=,又B∈(0,π),所以B=.
(2)因为|-|=,所以||=,
即b=,根据余弦定理及基本不等式得6=a2+c2-ac≥2ac-ac=(2-)ac(当且仅当a=c时取等号),即ac≤3(2+).
故△ABC的面积S=acsin B≤,
因此△ABC的面积的最大值为.



平面向量的概念及线性运算
最新考纲 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\知识衍化体验.TIF" \* MERGEFORMAT
知 识 梳 理
1.向量的有关概念
(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).
(2)零向量:长度为0的向量,其方向是任意的.
(3)单位向量:长度等于1个单位的向量.
(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.
(5)相等向量:长度相等且方向相同的向量.
(6)相反向量:长度相等且方向相反的向量.
2.向量的线性运算
向量运算 定 义 法则(或几何意义) 运算律
加法 求两个向量和的运算 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\W139.TIF" \* MERGEFORMAT (1)交换律:a+b=b+a. (2)结合律:(a+b)+c=a+(b+c)
减法 减去一个向量相当于加上这个向量的相反向量 INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\W140.TIF" \* MERGEFORMAT a-b=a+(-b)
数乘 求实数λ与向量a的积的运算 (1)|λa|=|λ||a|; (2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0 λ(μa)=λμa; (λ+μ)a=λa+μa;λ(a+b)=λa+λb
3.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.
[微点提醒]
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即+++…+An-1An=,特别地, 一个封闭图形,首尾连接而成的向量和为零向量.
2.若P为线段AB的中点,O为平面内任一点,则=(+).
基 础 自 测
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\疑误辨析.TIF" \* MERGEFORMAT
1.判断下列结论正误(在括号内打“√”或“×”)
(1)零向量与任意向量平行.(  )
(2)若a∥b,b∥c,则a∥c.(  )
(3)向量与向量是共线向量,则A,B,C,D四点在一条直线上.(  )
(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.(  )
解析 (2)若b=0,则a与c不一定平行.
(3)共线向量所在的直线可以重合,也可以平行,则A,B,C,D四点不一定在一条直线上.
答案 (1)√ (2)× (3)× (4)√
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\教材衍化.TIF" \* MERGEFORMAT
2.(必修4P78A6改编)给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量与相等.则所有正确命题的序号是(  )
A.① B.③ C.①③ D.①②
解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量与互为相反向量,故③错误.
答案 A
3.(必修4P92A12改编)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则+++等于(  )
A. B.2 C.3 D.4
解析 +++=(+)+(+)=2+2=4.
答案 D
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考题体验.TIF" \* MERGEFORMAT
4.(2019·东莞调研)如图所示,已知=3,=a,=b,=c,则下列等式中成立的是(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\5S13.TIF" \* MERGEFORMAT
A.c=b-a
B.c=2b-a
C.c=2a-b
D.c=a-b
解析 因为=3,=a,=b,所以=+=+=+(-)=-=b-a.
答案 A
5.(2018·长沙检测)若四边形ABCD满足=且||=||,则四边形ABCD的形状是(  )
A.等腰梯形 B.矩形
C.正方形 D.菱形
解析 因为=,所以∥,且||=||,所以四边形ABCD为以AD为上底,BC为下底的梯形.又||=||,所以梯形ABCD的两腰相等.因此四边形ABCD是等腰梯形.
答案 A
6.(2019·西安调研)设a与b是两个不共线向量,且向量a+λb与-(b-2a)共线,则λ=________.
解析 依题意知向量a+λb与2a-b共线,设a+λb=k(2a-b),则有(1-2k)a+(k+λ)b=0,所以
解得k=,λ=-.
答案 -
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\考点聚焦突破.tif" \* MERGEFORMAT
考点一 平面向量的概念
【例1】 (1)设a,b都是非零向量,下列四个条件中,一定能使+=0成立的是(  )
A.a=2b B.a∥b
C.a=-b D.a⊥b
(2)给出下列四个命题:
①若|a|=|b|,则a=b;
②若A,B,C,D是不共线的四点,则“=”是“四边形ABCD为平行四边形”的充要条件;
③若a=b,b=c,则a=c;
④a=b的充要条件是|a|=|b|且a∥b.
其中正确命题的序号是(  )
A.②③ B.①② C.③④ D.②④
解析 (1)由+=0得=-≠0,即a=-·|a|≠0,则a与b共线且方向相反,因此当向量a与向量b共线且方向相反时,能使+=0成立.对照各个选项可知,选项A中a与b的方向相同;选项B中a与b共线,方向相同或相反;选项C中a与b的方向相反;选项D中a与b互相垂直.
(2)①不正确.两个向量的长度相等,但它们的方向不一定相同.
②正确.∵=,∴||=||且∥,又A,B,C,D是不共线的四点,∴四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则||=||,
∥且,方向相同,因此=.
③正确.∵a=b,∴a,b的长度相等且方向相同,又b=c,∴b,c的长度相等且方向相同,∴a,c的长度相等且方向相同,故a=c.
④不正确.当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,故|a|=|b|且a∥b不是a=b的充要条件,而是必要不充分条件.
综上所述,正确命题的序号是②③.
答案 (1)C (2)A
规律方法 对于向量的有关概念应注意以下几点:
(1)平行向量就是共线向量,二者是等价的,它们均与起点无关;非零向量的平行具有传递性;相等向量一定是平行向量,而平行向量未必是相等向量;相等向量具有传递性.
(2)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负数,可以比较大小.
(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的平移混为一谈.
(4)非零向量a与的关系:是与a同方向的单位向量.
【训练1】 (1)如图,等腰梯形ABCD中,对角线AC与BD交于点P,点E,F分别在两腰AD,BC上,EF过点P,且EF∥AB,则下列等式中成立的是(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S464.TIF" \* MERGEFORMAT
A.= B.=
C.= D.=
(2)给出下列说法:
①非零向量a与b同向是a=b的必要不充分条件;
②若与共线,则A,B,C三点在同一条直线上;
③a与b是非零向量,若a与b同向,则a与-b反向;
④设λ,μ为实数,若λa=μb,则a与b共线.
其中错误说法的序号是________.
解析 (1)根据相等向量的定义,分析可得与不平行,与不平行,所以=,=均错误,与平行,但方向相反也不相等,只有与方向相同,且大小都等于线段EF长度的一半,所以=.
(2)根据向量的有关概念可知①②③正确,④错误.
答案 (1)D (2)④
考点二 平面向量的线性运算  INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\箭头.TIF" \* MERGEFORMAT 多维探究
角度1 向量的线性运算
【例2-1】 (2018·全国Ⅰ卷)在△ABC中,AD为BC边上的中线,E为AD的中点,则=(  )
A.- B.-
C.+ D.+
解析 ∵E是AD的中点,∴=-,
∴=+=-+,
又知D是BC的中点,
∴=(+),
因此=-(+)+=-.
答案 A
角度2 利用向量线性运算求参数
【例2-2】 (1)如图,在平行四边形ABCD中,AC,BD相交于点O,E为线段AO的中点.若=λ+μ(λ,μ∈R),则λ+μ等于(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S438.TIF" \* MERGEFORMAT
A.1 B. C. D.
(2)在锐角△ABC中,=3,=x+y(x,y∈R),则=________.
解析 (1)∵E为线段AO的中点,
∴=+=+×=+=λ+μ,
∴λ+μ=+=.
(2)由题设可得=-=+=(-A)+=+,
则x=,y=.故=3.
答案 (1)B (2)3
规律方法 1.解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.
2.用几个基本向量表示某个向量问题的基本技巧:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.
【训练2】 (1)如图所示,已知AB是圆O的直径,点C,D是半圆弧的两个三等分点,=a,=b,则=(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\W143.TIF" \* MERGEFORMAT
A.a-b    B.a-b
C.a+b    D.a+b
(2)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC.若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为________.
解析 (1)连接CD,由点C,D是半圆弧的三等分点,
得CD∥AB且==a,
所以=+=b+a.
(2)=+=+=+(-)=-+,
∵=λ1+λ2,
∴λ1=-,λ2=,
因此λ1+λ2=.
答案 (1)D (2)
考点三 共线向量定理及其应用
【例3】 设两个非零向量a与b不共线.
(1)若=a+b,=2a+8b,=3(a-b).求证:A,B,D三点共线;
(2)试确定实数k,使ka+b和a+kb共线.
(1)证明 ∵=a+b,=2a+8b,=3(a-b).
∴=+=2a+8b+3(a-b)=2a+8b+3a-3b=5(a+b)=5.∴,共线,又它们有公共点B,
∴A,B,D三点共线.
(2)解 ∵ka+b与a+kb共线,∴存在实数λ,
使ka+b=λ(a+kb),即ka+b=λa+λkb,
∴(k-λ)a=(λk-1)b.
∵a,b是不共线的两个非零向量,
∴k-λ=λk-1=0,∴k2-1=0,∴k=±1.
规律方法 1.证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
2.向量a,b共线是指存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立.
【训练3】 (1)已知a,b是不共线的向量,=λa+b,=a+μb,λ,μ∈R,则A,B,C三点共线的充要条件为(  )
A.λ+μ=2 B.λ-μ=1
C.λμ=-1 D.λμ=1
(2)(一题多解)已知A,B,C是直线l上不同的三个点,点O不在直线l上,则使等式x2+x+=0成立的实数x的取值集合为(  )
A.{0} B.?
C.{-1} D.{0,-1}
解析 (1)因为A,B,C三点共线,所以∥,设=m(m≠0),则λa+b=m(a+μb),所以所以λμ=1.
(2)法一 若要x2+x+=0成立,必须与x2+x共线,由于-=与共线,所以和的系数必须互为相反数,则x2=-x,解得x=0或x=-1,而当x=0时,=0,此时B,C两点重合,不合题意,舍去.故x=-1.
法二 ∵=-,∴x2+x+-=0,即=-x2-(x-1),∵A,B,C三点共线,
∴-x2-(x-1)=1,即x2+x=0,解得x=0或x=-1.当x=0时,x2+x+=0,此时B,C两点重合,不合题意,舍去.故x=-1.
答案 (1)D (2)C
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\反思与感悟A.TIF" \* MERGEFORMAT
[思维升华]
1.向量线性运算的三要素
向量的线性运算满足三角形法则和平行四边形法则,向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.
2.三个常用结论
(1)O为△ABC的重心的充要条件是++=0;
(2)四边形ABCD中,E为AD的中点,F为BC的中点,则+=2;
(3)对于平面上的任一点O,,不共线,满足=x+y(x,y∈R),则P,A,B共线?x+y=1.
注意向量共线与三点共线的区别.
[易错防范]
1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.
2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\分层限时训练.tif" \* MERGEFORMAT
基础巩固题组
(建议用时:35分钟)
一、选择题
1.已知下列各式:①++;②+++;③+++;④-+-,其中结果为零向量的个数为(  )
A.1 B.2 C.3 D.4
解析 由题知结果为零向量的是①④,故选B.
答案 B
2.如图,在正六边形ABCDEF中,++=(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\SW79.tif" \* MERGEFORMAT
A.0 B. C. D.
解析 由题图知++=++=+=.
答案 D
3.设a是非零向量,λ是非零实数,下列结论中正确的是(  )
A.a与λa的方向相反 B.a与λ2a的方向相同
C.|-λa|≥|a| D.|-λa|≥|λ|·a
解析 对于A,当λ>0时,a与λa的方向相同,当λ<0时,a与λa的方向相反,B正确;对于C,|-λa|=|-λ||a|,由于|-λ|的大小不确定,故|-λa|与|a|的大小关系不确定;对于D,|λ|a是向量,而|-λa|表示长度,两者不能比较大小.
答案 B
4.已知=a+2b,=-5a+6b,=7a-2b,则下列一定共线的三点是(  )
A.A,B,C B.A,B,D
C.B,C,D D.A,C,D
解析 因为=++=3a+6b=3(a+2b)=3,又,有公共点A,所以A,B,D三点共线.
答案 B
5.设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=(  )
A. B. C. D.
解析 如图,+=+++=+=(+)=·2=.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S468.TIF" \* MERGEFORMAT
答案 C
6.(2019·唐山二模)已知O是正方形ABCD的中心.若=λ+μ,其中λ,μ∈R,则=(  )
A.-2 B.- C.- D.
解析 =+=+=-+=-,∴λ=1,μ=-,因此=-2.
答案 A
7.如图所示,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB,AC于不同的两点M,N,若=m,=n,则m+n的值为(  )
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\4S465.TIF" \* MERGEFORMAT
A.1 B.2 C.3 D.4
解析 ∵O为BC的中点,
∴=(+)=(m+n)=+,
∵M,O,N三点共线,∴+=1,
∴m+n=2.
答案 B
8.在△ABC中,点D在线段BC的延长线上,且=3,点O在线段CD上(与点C,D不重合),若=x+(1-x),则x的取值范围是(  )
A. B.
C. D.
解析 设=y,
因为=+=+y=+y(-)=-y+(1+y).
因为=3,点O在线段CD上(与点C,D不重合),
所以y∈,
因为=x+(1-x),
所以x=-y,所以x∈.
答案 D
二、填空题
9.如图,点O是正六边形ABCDEF的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量相等的向量有________个.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\V48.TIF" \* MERGEFORMAT
解析 根据正六边形的性质和相等向量的定义,易知与向量相等的向量有,,,共3个.
答案 3
10.设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=____________.
解析 ∵向量a,b不平行,∴a+2b≠0,又向量λa+b与a+2b平行,则存在唯一的实数μ,使λa+b=μ(a+2b)成立,即λa+b=μa+2μb,则得解得λ=μ=.
答案 
11.在△ABC中,点M,N满足=2,=.若=x+y,则x+y=________.
解析 由题中条件得,=+=+=+(-)=-=x+y,
所以x=,y=-,因此x+y=-=.
答案 
12.(2018·清华大学自主招生能力测试)设O在△ABC的内部,D为AB的中点,且++2=0,则△ABC的面积与△AOC的面积的比值为________.
解析 ∵D为AB的中点,则=(+),
又++2=0,∴=-,∴O为CD的中点.
又∵D为AB的中点,∴S△AOC=S△ADC=S△ABC,则=4.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\5S14.TIF" \* MERGEFORMAT
答案 4
能力提升题组
(建议用时:15分钟)
13.已知点O,A,B不在同一条直线上,点P为该平面上一点,且2=2+,则(  )
A.点P在线段AB上
B.点P在线段AB的反向延长线上
C.点P在线段AB的延长线上
D.点P不在直线AB上
解析 因为2=2+,所以2=,所以点P在线段AB的反向延长线上,故选B.
答案 B
14.(2019·孝感二模)设D,E,F分别为△ABC三边BC,CA,AB的中点,则+2+3=(  )
A. B. C. D.
解析 因为D,E,F分别为△ABC三边BC,CA,AB的中点,
所以+2+3=(+)+2×(+)+3××(+)
=+++++=++=+=.
答案 D
15.已知△ABC和点M满足++=0,若存在实数m使得+=m成立,则m=________.
解析 由已知条件得+=-,如图,延长AM交BC于D点,则D为BC的中点.
INCLUDEPICTURE "C:\\Documents and Settings\\Administrator\\桌面\\最新考纲2020届高考数学(理科)一轮复习讲义(含答案)\\SW80.TIF" \* MERGEFORMAT
同理E,F分别是AC,AB的中点,
因此点M是△ABC的重心,
∴==(+),则m=3.
答案 3
16.(2019·郑州模拟)设e1与e2是两个不共线向量,=3e1+2e2,=ke1+e2,=3e1-2ke2,若A,B,D三点共线,则k的值为________.
解析 由题意,A,B,D三点共线,故必存在一个实数λ,使得=λ.
又=3e1+2e2,=ke1+e2,=3e1-2ke2,
所以=-=3e1-2ke2-(ke1+e2)
=(3-k)e1-(2k+1)e2,
所以3e1+2e2=λ(3-k)e1-λ(2k+1)e2,
又e1与e2不共线,
所以解得k=-.
答案 -