备战2020中考数学专题模型研究12讲 专题3 二次函数解析式模型研究(学生版+教师版)

文档属性

名称 备战2020中考数学专题模型研究12讲 专题3 二次函数解析式模型研究(学生版+教师版)
格式 zip
文件大小 647.7KB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2019-10-02 22:11:20

文档简介

【专题3】二次函数解析式四种模型研究
【回归概念】
1.一般式:
y=ax2+bx+c(a、b、c是常数,a不等于0)。已知抛物线上任意三点的坐标可求函数解析式,列出三元一次方程组解答即可。
2.顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数)。顶点坐标为(h,k);对称轴为直线x=h;顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k.有时题目会指出让你用配方法把一般式化成顶点式。
3.交点式(两根式):
[仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0]。
已知抛物线与x轴即y=0有交点A(x1, 0)和B(x2, 0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
4.对称点式:
若已知二次函数图象上的两个对称点(x1、m)(x2、m),则设成: y=a(x-x1)(x-x2)+m (a≠0),再将另一个坐标代入式子中,求出a的值,再化成一般形式即可。
【规律探寻】
求二次函数的解析式是解决二次函数问题的重要保证,在求解二次函数的解析式时一般选用待定系数法,但在具体题目中要根据不同条件,设出恰当的解析式,往往可以使解题过程简便.与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
①当h>0时,y=a(x-h)2的图像可由抛物线y=ax2向右平行移动h个单位得到;
②当h<0时,y=a(x-h)2的图像可由抛物线y=ax2向左平行移动|h|个单位得到;
③当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
④当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
⑤当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
⑥当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
【典例解析】
例题1:已知抛物线的顶点坐标为(-2,4),且与x轴的一个交点坐标为(1,0),求抛物线对应的函数解析式. (用多种方法解)
例题2:已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).
(1)求二次函数的解析式,并写出顶点D的坐标;
(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.
【达标检测】
1. (2019?湖北省咸宁市?3分)已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是(  )
A.y=x B.y=﹣ C.y=x2 D.y=﹣x2
2. (2019?山东省济宁市 ?3分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是(  )
A.y=(x﹣4)2﹣6 B.y=(x﹣1)2﹣3 C.y=(x﹣2)2﹣2 D.y=(x﹣4)2﹣2
3. (2019,山西,3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴简历平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A. B. C. D.
图1 图2
4. (2019?湖北天门?3分)矩形的周长等于40,则此矩形面积的最大值是   .
5. 已知抛物线与x轴交于A(1,0),B(-4,0)两点,与y轴交于点C,且AB=BC,求此抛物线对应的函数解析式.
6. 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两墙足够长),用28 m长的篱笆围成一个矩形花ABCD(篱笆只围AB,BC两边),设AB=x m,花园的面积为S m2.
(1)求S与x之间的函数解析式;
(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积
的最大值.
7. (2019?湖北省鄂州市?10分)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.
(1)直接写出y与x的函数关系式;
(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
8. (2019?贵州毕节12分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:
x(元)
15
20
30

y(袋)
25
20
10

若日销售量y是销售价x的一次函数,试求:
(1)日销售量y(袋)与销售价x(元)的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
【专题3】二次函数解析式四种模型研究
【回归概念】
1.一般式:
y=ax2+bx+c(a、b、c是常数,a不等于0)。已知抛物线上任意三点的坐标可求函数解析式,列出三元一次方程组解答即可。
2.顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数)。顶点坐标为(h,k);对称轴为直线x=h;顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k.有时题目会指出让你用配方法把一般式化成顶点式。
3.交点式(两根式):
[仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0]。
已知抛物线与x轴即y=0有交点A(x1, 0)和B(x2, 0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
4.对称点式:
若已知二次函数图象上的两个对称点(x1、m)(x2、m),则设成: y=a(x-x1)(x-x2)+m (a≠0),再将另一个坐标代入式子中,求出a的值,再化成一般形式即可。
【规律探寻】
求二次函数的解析式是解决二次函数问题的重要保证,在求解二次函数的解析式时一般选用待定系数法,但在具体题目中要根据不同条件,设出恰当的解析式,往往可以使解题过程简便.与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
①当h>0时,y=a(x-h)2的图像可由抛物线y=ax2向右平行移动h个单位得到;
②当h<0时,y=a(x-h)2的图像可由抛物线y=ax2向左平行移动|h|个单位得到;
③当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
④当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
⑤当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
⑥当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
【典例解析】
例题1:已知抛物线的顶点坐标为(-2,4),且与x轴的一个交点坐标为(1,0),求抛物线对应的函数解析式.
【解析】方法一:设抛物线对应的函数解析式为y=ax2+bx+c,由题意

∴抛物线对应的函数解析式为y=-x2-x+
方法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=-
∴抛物线对应的函数解析式为y=- (x+2)2+4.即y=-x2-x+
方法三:∵抛物线的顶点坐标为(-2,4),与x轴的一个交点坐标为(1,0),
∴抛物线的对称轴为直线x=-2,与x轴的另一个交点坐标为(-5,0).
设抛物线对应的函数解析式为y=a(x-1)(x+5),将点(-2,4)的坐标代入得4=a(-2-1)(-2+5),
解得a=-
∴抛物线对应的函数解析式为y=- (x-1)(x+5),
∴即y=-x2-x+
例题2::已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).
(1)求二次函数的解析式,并写出顶点D的坐标;
(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.
【思路导引】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;
(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.
【解答】解:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2,0)代入y=x2+bx﹣6得:b=﹣1,
∴抛物线的解析式为y=x2﹣x﹣6.
∴y=(x﹣)2﹣.
∴抛物线的顶点坐标D(,﹣).
(2)二次函数的图形沿x轴向左平移个单位长度得:y=(x+2)2﹣.
令y=0得:(x+2)2﹣=0,解得:x1=,x2=﹣.
∵a>0,
∴当y<0时,x的取值范围是﹣<x<.
【达标检测】
1. (2019?湖北省咸宁市?3分)已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是(  )
A.y=x B.y=﹣ C.y=x2 D.y=﹣x2
2. (2019?山东省济宁市 ?3分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是(  )
A.y=(x﹣4)2﹣6 B.y=(x﹣1)2﹣3 C.y=(x﹣2)2﹣2 D.y=(x﹣4)2﹣2
3. (2019,山西,3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴简历平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A. B. C. D.
图1 图2
4. (2019?湖北天门?3分)矩形的周长等于40,则此矩形面积的最大值是   .
5. 已知抛物线与x轴交于A(1,0),B(-4,0)两点,与y轴交于点C,且AB=BC,求此抛物线对应的函数解析式.
6. 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两墙足够长),用28 m长的篱笆围成一个矩形花ABCD(篱笆只围AB,BC两边),设AB=x m,花园的面积为S m2.
(1)求S与x之间的函数解析式;
(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积
的最大值.
7. (2019?湖北省鄂州市?10分)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.
(1)直接写出y与x的函数关系式;
(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
8. (2019?贵州毕节12分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:
x(元)
15
20
30

y(袋)
25
20
10

若日销售量y是销售价x的一次函数,试求:
(1)日销售量y(袋)与销售价x(元)的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
【达标检测答案】
1. (2019?湖北省咸宁市?3分)已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是(  )
A.y=x B.y=﹣ C.y=x2 D.y=﹣x2
【思路导引】由点A(﹣1,m),B(1,m)的坐标特点,可知函数图象关于y轴对称,于是排除选项A.B;再根据B(1,m),C(2,m﹣n)的特点和二次函数的性质,可知抛物线的开口向下,即a<0,故D选项正确.
【解答】解:∵A(﹣1,m),B(1,m),
∴点A与点B关于y轴对称;
由于y=x,y=的图象关于原点对称,因此选项A.B错误;
∵n>0,∴m﹣n<m;
由B(1,m),C(2,m﹣n)可知,在对称轴的右侧,y随x的增大而减小,
对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,
∴D选项正确故选:D.
2. (2019?山东省济宁市 ?3分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是(  )
A.y=(x﹣4)2﹣6 B.y=(x﹣1)2﹣3 C.y=(x﹣2)2﹣2 D.y=(x﹣4)2﹣2
【思路导引】先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.
【解答】解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),
把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2)
所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.故选:D.
3. (2019,山西,3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴简历平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A. B. C. D.
图1 图2
【解析】设抛物线的解析式为将代入得:
∴抛物线解析式为:,故选B
4. (2019?湖北天门?3分)矩形的周长等于40,则此矩形面积的最大值是 100 .
【思路导引】设矩形的宽为x,则长为(20﹣x),S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,S最大值为100.
【解答】解:设矩形的宽为x,则长为(20﹣x),
S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,
当x=10时,S最大值为100.
故答案为100.
5. 已知抛物线与x轴交于A(1,0),B(-4,0)两点,与y轴交于点C,且AB=BC,求此抛物线对应的函数解析式.
【解析】由A(1,0),B(-4,0)可知AB=5,OB=4.
又∵BC=AB,∴BC=5.
在Rt△BCO中,OC=
∴C点的坐标为(0,3)或(0,-3).
设抛物线对应的函数解析式为y=a(x-1)(x+4),将点(0,3)的坐标代入得3=a(0-1)(0+4),
解得a=-
将点(0,-3)的坐标代入得-3=a(0-1)(0+4),解得a=
∴该抛物线对应的函数解析式为
y=- (x-1)(x+4)或y=(x-1)(x+4),
即y=-x2-x+3
或y=x2+x-3.
6. 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两墙足够长),用28 m长的篱笆围成一个矩形花ABCD(篱笆只围AB,BC两边),设AB=x m,花园的面积为S m2.
(1)求S与x之间的函数解析式;
(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积
的最大值.
【解析】(1)∵AB=x m,∴BC=(28-x) m.
于是易得S=AB·BC=x(28-x)=-x2+28x.
即S=-x2+28x(0<x<28).
(2)由题意可知,
解得6≤x≤13.
由(1)知,S=-x2+28x=-(x-14)2+196.
易知当6≤x≤13时,S随x的增大而增大,
∴当x=13时,S最大值=195,
即花园面积的最大值为195 m2.
7. (2019?湖北省鄂州市?10分)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.
(1)直接写出y与x的函数关系式;
(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
【思路导引】(1)直接利用销售单价每降1元,则每月可多销售5条得出y与x的函数关系式;
(2)利用销量×每件利润=总利润进而得出函数关系式求出最值;
(3)利用总利润=4220+200,求出x的值,进而得出答案.
【解答】解:(1)由题意可得:y=100+5(80﹣x)整理得 y=﹣5x+500;
(2)由题意,得:
w=(x﹣40)(﹣5x+500)
=﹣5x2+700x﹣20000
=﹣5(x﹣70)2+4500
∵a=﹣5<0∴w有最大值
即当x=70时,w最大值=4500
∴应降价80﹣70=10(元)
答:当降价10元时,每月获得最大利润为4500元;
(3)由题意,得:
﹣5(x﹣70)2+4500=4220+200
解之,得:x1=66,x2 =74,
∵抛物线开口向下,对称轴为直线x=70,
∴当66≤x≤74时,符合该网店要求
而为了让顾客得到最大实惠,故x=66
∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.
8. (2019?贵州毕节12分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:
x(元)
15
20
30

y(袋)
25
20
10

若日销售量y是销售价x的一次函数,试求:
(1)日销售量y(袋)与销售价x(元)的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
【思路导引】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可
(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.
【解答】解:
(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得
,解得
故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40
(2)依题意,设利润为w元,得
w=(x﹣10)(﹣x+40)=﹣x2+50x+400
整理得w=﹣(x﹣25)2+225
∵﹣1<0
∴当x=2时,w取得最大值,最大值为225
故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.
同课章节目录