【专题8】圆中常见的计算题型研究
【回归概念】
题型研究:①有关角度的计算 ;②半径、弦长的计算 ;③面积的计算,其中包括利用“作差法”求面积、利用“等积法”求面积、利用“平移法”求面积;④实际应用的计算,这方面主要包括:利用垂径定理解决台风问题、利用圆周角知识解决足球射门问题(转化思想)、利用直线与圆的位置关系解决范围问题、利用圆锥侧面展开图解决材料最省问题等问题。
【规律探寻】
与圆有关的计算主要体现在:利用圆周角定理求角度,利用垂径定理构造直角三角形并结合勾股定理,已知弦长、弦心距、半径三个量中的任意两个量时,可求出第三个量,利用弧长、扇形面积公式计算弧长、扇形面积,利用圆的知识解决实际问题等;其中涉面积的计算,常采用作差法、等积法、平移法、割补法等,涉实际应用计算常采用建模思想进行计算.
【典例解析】
例题1:(2019?云南?4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4 B.6.25 C.7.5 D.9
【考点】直角三角形的内切圆.
【分析】由勾股定理的逆定理可知△ABC是直角三角形,由切线长定理,可知直角三角形内切圆的半径等于.
【解答】解:∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠A=90°,
∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,则OE=OF=AE=AF=r,∴BD=BF=AB-r,CD=CE=AC-r,
∴BC=BD+CD= AB-r+ AC-r,∴r==2,
∴S四边形AEOF=r2=4,故选A.
例题2:(2019?黑龙江省齐齐哈尔市?8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.
(1)求证:直线AD是⊙O的切线;
(2)若直径BC=4,求图中阴影部分的面积.
【分析】(1)连接OA,则得出∠COA=2∠B=2∠D=60°,可求得∠OAD=90°,可得出结论;
(2)可利用△OAD的面积﹣扇形AOC的面积求得阴影部分的面积.
【解答】(1)证明:连接OA,则∠COA=2∠B,
∵AD=AB,
∴∠B=∠D=30°,
∴∠COA=60°,
∴∠OAD=180°﹣60°﹣30°=90°,
∴OA⊥AD,
即CD是⊙O的切线;
(2)解:∵BC=4,
∴OA=OC=2,
在Rt△OAD中,OA=2,∠D=30°,
∴OD=2OA=4,AD=2,
∴S△OAD=OA?AD=×2×2=2,
∵∠COA=60°,
∴S扇形COA==π,
∴S阴影=S△OAD﹣S扇形COA=2﹣.
例题3:如图,已知A,B两地相距1 km.要在A,B两地之间修建一条笔直的水渠(即图中的线段AB),经测量在A地的北偏东60°方向,B地的北偏西45°方向的C处有一个以C为圆心,350 m为半径的圆形公园,则修建的这条水渠会不会穿过公园?为什么?
修建的这条水渠不会穿过公园.
理由:如图,过点C作CD⊥AB,垂足为D.
由题易得∠CBA=45°,
∴∠BCD=45°.
∴CD=BD.
设CD=x km,则BD=x km.
由题易得∠CAB=30°,
∴AC=2CD=2x km,
∴AD==x(km),
∴x+x=1.
解得x=
即CD= ≈0.366(km)=366 m>350 m,
也就是说,以点C为圆心,350 m为半径的圆与AB相离.
∴修建的这条水渠不会穿过公园.
【达标检测】
1. (2019,四川巴中,4分)如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是( )
A.15π B.30π C.45π D.60π
【分析】圆锥的侧面积:S侧=?2πr?l=πrl,求出圆锥的母线l即可解决问题.
【解答】解:圆锥的母线l===10,
∴圆锥的侧面积=π?10?6=60π,
故选:D.
2. (2019?四川省广安市?3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为( )
A.π﹣ B.π﹣ C.π﹣ D.π﹣
【分析】根据三角形的内角和得到∠B=60°,根据圆周角定理得到∠COD=120°,∠CDB=90°,根据扇形和三角形的面积公式即可得到结论.
【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°,
∴∠COD=120°,
∵BC=4,BC为半圆O的直径,
∴∠CDB=90°,
∴OC=OD=2,
∴CD=BC=2,
图中阴影部分的面积=S扇形COD﹣S△COD=﹣2×1=﹣,
故选:A.
3. (2019,山东枣庄,3分)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)( )
A.8﹣π B.16﹣2π C.8﹣2π D.8﹣π
【分析】根据S阴=S△ABD﹣S扇形BAE计算即可.
【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,
故选:C.
4. (2019浙江丽水3分)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )
A.2 B. C. D.
【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.
【解答】解:∵∠A=90°,AB=AD,
∴△ABD为等腰直角三角形,
∴∠ABD=45°,BD=AB,
∵∠ABC=105°,
∴∠CBD=60°,
而CB=CD,
∴△CBD为等边三角形,
∴BC=BD=AB,
∵上面圆锥与下面圆锥的底面相同,
∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,
∴下面圆锥的侧面积=×1=.
故选:D.
5. (2019?山东泰安?4分)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为( )
A.π B.π C.2π D.3π
【分析】连接OA、OB,作OC⊥AB于C,根据翻转变换的性质得到OC=OA,根据等腰三角形的性质、三角形内角和定理求出∠AOB,根据弧长公式计算即可.
【解答】解:连接OA、OB,作OC⊥AB于C,
由题意得,OC=OA,
∴∠OAC=30°,
∵OA=OB,
∴∠OBA=∠OAC=30°,
∴∠AOB=120°,
∴的长==2π,
故选:C.
6. (2019湖北咸宁市3分)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为 (结果保留π).
【分析】根据题意,作出合适的辅助线,即可求得CD和∠COB的度数,即可得到阴影部分的面积是半圆的面积减去△AOC和扇形BOC的面积.
【解答】解:连接OC.BC,作CD⊥AB于点D,
∵直径AB=6,点C在半圆上,∠BAC=30°,
∴∠ACB=90°,∠COB=60°,
∴AC=3,
∵∠CDA=90°,
∴CD=,
故答案为:3π﹣.
7. 如图所示,E是半径为2 cm的⊙O的直径CD延长线上的一点,AB∥CD且AB=CD,则阴影部分的面积是 .
解:如图,连接OA,OB.
∵AB∥CD,∴S△ABE=S△AOB,
∴S阴影=S扇形OAB.
∵AB=CD=AO=OB=2 cm,
∴△OAB是等边三角形,
∴∠AOB=60°.
∴S扇形OAB==π(cm2).
即阴影部分的面积为π cm2.
8. (2019?湖北黄石3分)如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C.D两点的⊙O分别交AC.BC于点E.F,AD=,∠ADC=60°,则劣弧的长为 π .
【分析】连接DF,OD,根据圆周角定理得到∠ADF=90°,根据三角形的内角和得到∠AOD=120°,根据三角函数的定义得到CF==4,根据弧长个公式即可得到结论.
【解答】解:连接DF,OD,
∵CF是⊙O的直径,
∴∠CDF=90°,
∵∠ADC=60°,∠A=90°,
∴∠ACD=30°,
∵CD平分∠ACB交AB于点D,
∴∠DCF=30°,
∵OC=OD,
∴∠OCD=∠ODC=30°,
∴∠COD=120°,
在Rt△CAD中,CD=2AD=2,
在Rt△FCD中,CF===4,
∴⊙O的半径=2,
∴劣弧的长==π,
故答案为π.
9. (2019?山东泰安?4分)如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为 π .
【分析】连接OC,作CH⊥OB于H,根据直角三角形的性质求出AB,根据勾股定理求出BD,证明△AOC为等边三角形,得到∠AOC=60°,∠COB=30°,根据扇形面积公式、三角形面积公式计算即可.
【解答】解:连接OC,作CH⊥OB于H,
∵∠AOB=90°,∠B=30°,
∴∠OAB=60°,AB=2OA=6,
由勾股定理得,OB==3,
∵OA=OC,∠OAB=60°,
∴△AOC为等边三角形,
∴∠AOC=60°,
∴∠COB=30°,
∴CO=CB,CH=OC=,
∴阴影都分的面积=﹣×3×3×+×3×﹣=π,
故答案为:π.
10. 如图所示,两个半圆中,O为大半圆的圆心,长为18的弦AB与直径CD平行且与小半圆相切,那么图中阴影部分的面积等于多少?
解:将小半圆向右平移,使两个半圆的圆心重合,如图,则阴影部分的面积等于半圆环面积.作OE⊥AB于E(易知E为切点),连接OA,
∴AE=AB=9.
∴阴影部分的面积=π·OA2-π·OE2=π(OA2-OE2)
=π·AE2=π·92=π.
11. (2018·山东临沂·9分)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.
(1)求证:AC是⊙O的切线;
(2)若BD=,BE=1.求阴影部分的面积.
【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;
(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.
【解答】(1)证明:连接OD,作OF⊥AC于F,如图,
∵△ABC为等腰三角形,O是底边BC的中点,
∴AO⊥BC,AO平分∠BAC,
∵AB与⊙O相切于点D,
∴OD⊥AB,
而OF⊥AC,
∴OF=OD,
∴AC是⊙O的切线;
(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,
∴r2+()2=(r+1)2,解得r=1,
∴OD=1,OB=2,
∴∠B=30°,∠BOD=60°,
∴∠AOD=30°,
在Rt△AOD中,AD=OD=,
∴阴影部分的面积=2S△AOD﹣S扇形DOF
=2××1×﹣
=﹣.
12. 如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为40cm的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?
解:∵圆锥形漏斗的底面半径为20 cm,高为40cm,
∴圆锥的母线长为=60(cm).
设圆锥的侧面展开图的圆心角为n°,
则有=2π×20,解得n=120.
方案一:如图①,扇形的半径为60 cm,矩形的宽为60cm,易求得矩形的长为60cm.
当AB=60 cm,BC=60cm时,
S矩形ABCD=3 600cm2.
方案二:如图②,扇形与矩形的两边相切,有一边重合,
易求得矩形的宽为60 cm,长为30+60=90(cm),
此时矩形的面积为90×60=5 400(cm2).
∵3 600>5 400,
∴方案二所用材料最省.
即选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.
13. (2018?江苏扬州?10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.
(1)求证:AC是⊙O的切线;
(2)若点F是A的中点,OE=3,求图中阴影部分的面积;
(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.
【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;
(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE﹣S扇形EOF进行计算;
(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.
【解答】(1)证明:作OH⊥AC于H,如图,
∵AB=AC,AO⊥BC于点O,
∴AO平分∠BAC,
∵OE⊥AB,OH⊥AC,
∴OH=OE,
∴AC是⊙O的切线;
(2)解:∵点F是AO的中点,
∴AO=2OF=3,
而OE=3,
∴∠OAE=30°,∠AOE=60°,
∴AE=OE=3,
∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3﹣=;
(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,
∵PF=PF′,
∴PE+PF=PE+PF′=EF′,此时EP+FP最小,
∵OF′=OF=OE,
∴∠F′=∠OEF′,
而∠AOE=∠F′+∠OEF′=60°,
∴∠F′=30°,
∴∠F′=∠EAF′,
∴EF′=EA=3,
即PE+PF最小值为3,
在Rt△OPF′中,OP=OF′=,
在Rt△ABO中,OB=OA=×6=2,
∴BP=2﹣=,
即当PE+PF取最小值时,BP的长为.
14. 如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30 km/h,受影响区域的半径为200 km,B市位于点P北偏东75°的方向上,距离P点320 km处.
(1)试说明台风是否会影响B市;
(2)若B市受台风的影响,求台风影响B市的时间.
解析:(1)如图,过B作BH⊥PQ于H,在Rt△BHP中,由条件易知:BP=320 km,∠BPQ=30°.
∴BH=BP=160 km<200 km.
∴台风会影响B市.
(2)如图,以B为圆心,200 km为半径作圆,交PQ于P1,P2两点,连接BP1,
由垂径定理知P1P2=2P1H.
在Rt△BHP1中,
BP1=200 km,BH=160 km,
∴P1H==120(km).
∴P1P2=2P1H=240 km.
∴台风影响B市的时间为=8(h).
【专题8】圆中常见的计算题型研究
【回归概念】
题型研究:①有关角度的计算 ;②半径、弦长的计算 ;③面积的计算,其中包括利用“作差法”求面积、利用“等积法”求面积、利用“平移法”求面积;④实际应用的计算,这方面主要包括:利用垂径定理解决台风问题、利用圆周角知识解决足球射门问题(转化思想)、利用直线与圆的位置关系解决范围问题、利用圆锥侧面展开图解决材料最省问题等问题。
【规律探寻】
与圆有关的计算主要体现在:利用圆周角定理求角度,利用垂径定理构造直角三角形并结合勾股定理,已知弦长、弦心距、半径三个量中的任意两个量时,可求出第三个量,利用弧长、扇形面积公式计算弧长、扇形面积,利用圆的知识解决实际问题等;其中涉面积的计算,常采用作差法、等积法、平移法、割补法等,涉实际应用计算常采用建模思想进行计算.
【典例解析】
例题1:(2019?云南?4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4 B.6.25 C.7.5 D.9
例题2:(2019?黑龙江省齐齐哈尔市?8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.
(1)求证:直线AD是⊙O的切线;
(2)若直径BC=4,求图中阴影部分的面积.
例题3:如图,已知A,B两地相距1 km.要在A,B两地之间修建一条笔直的水渠(即图中的线段AB),经测量在A地的北偏东60°方向,B地的北偏西45°方向的C处有一个以C为圆心,350 m为半径的圆形公园,则修建的这条水渠会不会穿过公园?为什么?
【达标检测】
1. (2019,四川巴中,4分)如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是( )
A.15π B.30π C.45π D.60π
2. (2019?四川省广安市?3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为( )
A.π﹣ B.π﹣ C.π﹣ D.π﹣
3. (2019,山东枣庄,3分)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)( )
A.8﹣π B.16﹣2π C.8﹣2π D.8﹣π
4. (2019浙江丽水3分)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )
A.2 B. C. D.
5. (2019?山东泰安?4分)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为( )
A.π B.π C.2π D.3π
6. (2019湖北咸宁市3分)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为 (结果保留π).
7. 如图所示,E是半径为2 cm的⊙O的直径CD延长线上的一点,AB∥CD且AB=CD,则阴影部分的面积是 .
8. (2019?湖北黄石3分)如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C.D两点的⊙O分别交AC.BC于点E.F,AD=,∠ADC=60°,则劣弧的长为 .
9. (2019?山东泰安?4分)如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为 .
10. 如图所示,两个半圆中,O为大半圆的圆心,长为18的弦AB与直径CD平行且与小半圆相切,那么图中阴影部分的面积等于多少?
11. (2018·山东临沂·9分)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.
(1)求证:AC是⊙O的切线;
(2)若BD=,BE=1.求阴影部分的面积.
12. 如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为40cm的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?
13. (2018?江苏扬州?10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.
(1)求证:AC是⊙O的切线;
(2)若点F是A的中点,OE=3,求图中阴影部分的面积;
(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.
14. 如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30 km/h,受影响区域的半径为200 km,B市位于点P北偏东75°的方向上,距离P点320 km处.
(1)试说明台风是否会影响B市;
(2)若B市受台风的影响,求台风影响B市的时间.