备战2020中考数学专题模型研究12讲 专题10 几何中线段的最值问题解法研究(学生版+教师版)

文档属性

名称 备战2020中考数学专题模型研究12讲 专题10 几何中线段的最值问题解法研究(学生版+教师版)
格式 zip
文件大小 241.4KB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2019-10-02 22:43:50

文档简介

【专题10】几何中线段的最值问题解法研究
【回归概念】
常见的几何中线段的最值问题有:利用两点之间线段最短求最短路径或线段的最小值,利用垂线段最短求解,利用三角形三边关系(三角形任意两边之和大于第三边,任意两边之差小于第三边)当三点共线时取得值最小或最大;问题的模型主要有以下几种:
【规律探寻】
【典例解析】
例题1:(2019?湖南长沙?3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是(  )
A.2 B.4 C.5 D.10
例题2:(2019?湖北武汉?3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.
问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是  .
【达标检测】
1. (2018?山东滨州?3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是(  )
A. B. C.6 D.3
2. (2018?湖北黄冈?3分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为( )cm(杯壁厚度不计).
A.14 B.16 C.118 D.20
3. (2018四川省泸州市3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为 ( ).
A.12 B.16 C.14 D.18
4. (2019?山东省聊城市?3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为(  )
A.(2,2) B.(,) C.(,) D.(3,3)
5. (2019?山东泰安?4分)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是(  )
A.2 B.4 C. D.
6. (2019?湖北省鄂州市?3分)如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为   .
7. (2019?四川省凉山州?5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为  .
8. (2019?江苏宿迁?3分)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为  .
9. (2019?湖南衡阳?12分)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.
(1)当t为何值时,△BPQ为直角三角形;
(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;
(3)求DE的长;
(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.
10. (2019?广西贵港?10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.
①写出旋转角α的度数;
②求证:EA′+EC=EF;
(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)
【专题10】几何中线段的最值问题解法研究
【回归概念】
常见的几何中线段的最值问题有:利用两点之间线段最短求最短路径或线段的最小值,利用垂线段最短求解,利用三角形三边关系(三角形任意两边之和大于第三边,任意两边之差小于第三边)当三点共线时取得值最小或最大;问题的模型主要有以下几种:
【规律探寻】
【典例解析】
例题1:(2019?湖南长沙?3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是(  )
A.2 B.4 C.5 D.10
【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.
【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.
∵BE⊥AC,
∴∠ABE=90°,
∵tanA==2,设AE=a,BE=2a,
则有:100=a2+4a2,
∴a2=20,
∴a=2或﹣2(舍弃),
∴BE=2a=4,
∵AB=AC,BE⊥AC,CM⊥AC,
∴CM=BE=4(等腰三角形两腰上的高相等))
∵∠DBH=∠ABE,∠BHD=∠BEA,
∴sin∠DBH===,
∴DH=BD,
∴CD+BD=CD+DH,
∴CD+DH≥CM,
∴CD+BD≥4,
∴CD+BD的最小值为4.
故选:B.
【点评】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.
例题2:(2019?湖北武汉?3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.
问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是 2 .
【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=PA,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF(SAS),得出PE=PF,即可证得结论;
(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D.E.O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.
【解答】(1)证明:如图1,在BC上截取BG=PD,
在△ABG和△ADP中

∴△ABG≌△ADP(SAS),
∴AG=AP,∠BAG=∠DAP,
∵∠GAP=∠BAD=60°,
∴△AGP是等边三角形,
∴∠AGC=60°=∠APG,
∴∠APE=60°,
∴∠EPC=60°,
连接EC,延长BC到F,使CF=PA,连接EF,
∵将△ABC绕点A逆时针旋转60°得到△ADE,
∴∠EAC=60°,∠EPC=60°,
∵AE=AC,
∴△ACE是等边三角形,
∴AE=EC=AC,
∵∠PAE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,
∴∠PAE=∠ECF,
在△APE和△ECF中
∴△APE≌△ECF(SAS),
∴PE=PF,
∴PA+PC=PE;
(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.
∵△MGD和△OME是等边三角形
∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,
∴∠GMO=∠DME
在△GMO和△DME中
∴△GMO≌△DME(SAS),
∴OG=DE
∴NO+GO+MO=DE+OE+NO
∴当D.E.O、M四点共线时,NO+GO+MO值最小,
∵∠NMG=75°,∠GMD=60°,
∴∠NMD=135°,
∴∠DMF=45°,
∵MG=.
∴MF=DF=4,
∴NF=MN+MF=6+4=10,
∴ND===2,
∴MO+NO+GO最小值为2,
故答案为2,
【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,最短路径问题,构造等边三角形是解答本题的关键.
【达标检测】
1. (2018?山东滨州?3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是(  )
A. B. C.6 D.3
【分析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.
【解答】解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,
则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,
作OH⊥CD于H,则CH=DH,
∵∠OCH=30°,
∴OH=OC=,
CH=OH=,
∴CD=2CH=3.
故选:D.
【点评】本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.
2. (2018?湖北黄冈?3分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为( )cm(杯壁厚度不计).
A.14 B.16 C.118 D.20
【考点】平面展开-最短路径问题.
【分析】将圆柱体侧面展开,过B作BQ⊥EF于Q,作A关于EH的对称点A′,连接A′B交EH于P,连接AP,则AP+PB就是蚂蚁到达蜂蜜的最短距离,求出A′Q,BQ,根据勾股定理求出A′B即可.
【解答】解:沿过A的圆柱的高剪开,得出矩形EFGH,过B作BQ⊥EF于Q,作A关于EH的对称点A′,连接A′B交EH于P,连接AP,则AP+PB就是蚂蚁到达蜂蜜的最短距离,
∵AE=A′E,A′P=AP,
∴AP+PB=A′P+PB=A′B,
∵BQ=×32cm=16cm,A′Q=14cm-5cm+3cm=12cm,
在Rt△A′QB中,由勾股定理得:A′B==20cm.
故答案为:20.
【点评】本题考查了平面展开-最短路径问题.将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
3. (2018四川省泸州市3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为 ( ).
A.12 B.16 C.14 D.18
【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;
【解答】解:如图作AH⊥BC于H,连接AD.
∵EG垂直平分线段AC,
∴DA=DC,
∴DF+DC=AD+DF,
∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,
∵?BC?AH=120,
∴AH=12,
∵AB=AC,AH⊥BC,
∴BH=CH=10,
∵BF=3FC,
∴CF=FH=5,
∴AF===13,
∴DF+DC的最小值为13.
∴△CDF周长的最小值为13+5=18;
故答案为18.故选B.
【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.
4. (2019?山东省聊城市?3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为(  )
A.(2,2) B.(,) C.(,) D.(3,3)
【考点】轴对称﹣最短路线
【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.
【解答】解:∵在Rt△ABO中,∠OBA=90°,A(4,4),
∴AB=OB=4,∠AOB=45°,
∵=,点D为OB的中点,
∴BC=3,OD=BD=2,
∴D(0,2),C(4,3),
作D关于直线OA的对称点E,连接EC交OA于P,
则此时,四边形PDBC周长最小,E(0,2),
∵直线OA 的解析式为y=x,
设直线EC的解析式为y=kx+b,
∴,
解得:,
∴直线EC的解析式为y=x+2,
解得,,
∴P(,),
故选:C.
【点评】本题考查了问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.
5. (2019?山东泰安?4分)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是(  )
A.2 B.4 C. D.
【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.
【解答】解:如图:
当点F与点C重合时,点P在P1处,CP1=DP1,
当点F与点E重合时,点P在P2处,EP2=DP2,
∴P1P2∥CE且P1P2=CE
当点F在EC上除点C、E的位置处时,有DP=FP
由中位线定理可知:P1P∥CE且P1P=CF
∴点P的运动轨迹是线段P1P2,
∴当BP⊥P1P2时,PB取得最小值
∵矩形ABCD中,AB=4,AD=2,E为AB的中点,
∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2
∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°
∴∠DP2P1=90°
∴∠DP1P2=45°
∴∠P2P1B=90°,即BP1⊥P1P2,
∴BP的最小值为BP1的长
在等腰直角BCP1中,CP1=BC=2
∴BP1=2
∴PB的最小值是2
故选:D.
【点评】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.
6. (2019?湖北省鄂州市?3分)如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为 16 .
【分析】连接OC并延长,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最大,根据勾股定理和题意求得OP=8,则AB的最大长度为16.
【解答】解:连接OC并延长,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最大,
∵C(3,4),
∴OC==5,
∵以点C为圆心的圆与y轴相切.
∴⊙C的半径为3,
∴OP=OA=OB=8,
∵AB是直径,
∴∠APB=90°,
∴AB长度的最大值为16,
故答案为16.
【点评】本题考查了切线的性质,坐标和图形的性质,圆周角定理,找到OP的最大值是解题的关键.
7. (2019?四川省凉山州?5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为 4 .
【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP=12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.
【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,
∴∠BEP=∠CPQ.
又∠B=∠C=90°,
∴△BPE∽△CQP.
∴.
设CQ=y,BP=x,则CP=12﹣x.
∴,化简得y=﹣(x2﹣12x),
整理得y=﹣(x﹣6)2+4,
所以当x=6时,y有最大值为4.
故答案为4.
【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.
8. (2019?江苏宿迁?3分)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为  .
【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.
【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动
将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG
从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上
作CM⊥HN,则CM即为CG的最小值
作EP⊥CM,可知四边形HEPM为矩形,
则CM=MP+CP=HE+EC=1+=
故答案为.
【点评】本题考查了线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.
9. (2019?湖南衡阳?12分)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.
(1)当t为何值时,△BPQ为直角三角形;
(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;
(3)求DE的长;
(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.
【分析】(1)当BQ=2BP时,∠BPQ=90°,由此构建方程即可解决问题.
(2)如图1中,连接BF交AC于M.证明EF=2EM,由此构建方程即可解决问题.
(3)证明DE=AC即可解决问题.
(4)如图3中,连接AM,AB′.根据AB′≥AM﹣MB′求解即可解决问题.
【解答】解:(1)∵△ABC是等边三角形,
∴∠B=60°,
∴当BQ=2BP时,∠BPQ=90°,
∴6+t=2(6﹣t),
∴t=3,
∴t=3时,△BPQ是直角三角形.
(2)存在.
理由:如图1中,连接BF交AC于M.
∵BF平分∠ABC,BA=BC,
∴BF⊥AC,AM=CM=3cm,
∵EF∥BQ,
∴∠EFM=∠FBC=∠ABC=30°,
∴EF=2EM,
∴t=2?(3﹣t),
解得t=3.
(3)如图2中,作PK∥BC交AC于K.
∵△ABC是等边三角形,
∴∠B=∠A=60°,
∵PK∥BC,
∴∠APK=∠B=60°,
∴∠A=∠APK=∠AKP=60°,
∴△APK是等边三角形,
∴PA=PK,
∵PE⊥AK,
∴AE=EK,
∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,
∴△PKD≌△QCD(AAS),
∴DK=DC,
∴DE=EK+DK=(AK+CK)=AC=3(cm).
(4)如图3中,连接AM,AB′
∵BM=CM=3,AB=AC,
∴AM⊥BC,
∴AM==3,
∵AB′≥AM﹣MB′,
∴AB′≥3﹣3,
∴AB′的最小值为3﹣3.
【点评】本题属于四边形综合题,考查了等边三角形的性质,平行四边形的判定和性质,翻折变换,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
10. (2019?广西贵港?10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.
①写出旋转角α的度数;
②求证:EA′+EC=EF;
(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)
【分析】(1)①解直角三角形求出∠A′CD即可解决问题.
②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.
(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解决问题.
【解答】(1)①解:旋转角为105°.
理由:如图1中,
∵A′D⊥AC,
∴∠A′DC=90°,
∵∠CA′D=15°,
∴∠A′CD=75°,
∴∠ACA′=105°,
∴旋转角为105°.
②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.
∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,
∴∠CEA′=120°,
∵FE平分∠CEA′,
∴∠CEF=∠FEA′=60°,
∵∠FCO=180°﹣45°﹣75°=60°,
∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,
∴△FOC∽△A′OE,
∴=,
∴=,
∵∠COE=∠FOA′,
∴△COE∽△FOA′,
∴∠FA′O=∠OEC=60°,
∴△A′OF是等边三角形,
∴CF=CA′=A′F,
∵EM=EC,∠CEM=60°,
∴△CEM是等边三角形,
∠ECM=60°,CM=CE,
∵∠FCA′=∠MCE=60°,
∴∠FCM=∠A′CE,
∴△FCM≌△A′CE(SAS),
∴FM=A′E,
∴CE+A′E=EM+FM=EF.
(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.
由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,
∴△A′EF≌△A′EB′,
∴EF=EB′,
∴B′,F关于A′E对称,
∴PF=PB′,
∴PA+PF=PA+PB′≥AB′,
在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,
∴B′M=CB′=1,CM=,
∴AB′===.
∴PA+PF的最小值为.
【点评】本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.
同课章节目录